On a Reverse Half-Discrete Hardy-Hilbert’s Inequality with Parameters
By means of the weight functions, the idea of introduced parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s inequality and the reverse equivalent forms are given. The equivalent statements of the best possible constant factor involving several pa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/11/1054 |
Summary: | By means of the weight functions, the idea of introduced parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s inequality and the reverse equivalent forms are given. The equivalent statements of the best possible constant factor involving several parameters are considered. As applications, two results related to the case of the non-homogeneous kernel and some particular cases are obtained. |
---|---|
ISSN: | 2227-7390 |