On a Reverse Half-Discrete Hardy-Hilbert’s Inequality with Parameters

By means of the weight functions, the idea of introduced parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s inequality and the reverse equivalent forms are given. The equivalent statements of the best possible constant factor involving several pa...

Full description

Bibliographic Details
Main Authors: Bicheng Yang, Shanhe Wu, Aizhen Wang
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/11/1054
Description
Summary:By means of the weight functions, the idea of introduced parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s inequality and the reverse equivalent forms are given. The equivalent statements of the best possible constant factor involving several parameters are considered. As applications, two results related to the case of the non-homogeneous kernel and some particular cases are obtained.
ISSN:2227-7390