Fault diagnosis of an induction motor using data fusion based on neural networks

Abstract In this paper, neural network‐based data fusion is used to detect fault and isolate stator winding short circuit, outer bearing race, and broken rotor bar defects in an induction motor. In addition, the robustness of the proposed method against the disturbance introduced by the coupled pump...

Full description

Bibliographic Details
Main Authors: Saeid Jorkesh, Javad Poshtan
Format: Article
Language:English
Published: Wiley 2021-10-01
Series:IET Science, Measurement & Technology
Online Access:https://doi.org/10.1049/smt2.12068
Description
Summary:Abstract In this paper, neural network‐based data fusion is used to detect fault and isolate stator winding short circuit, outer bearing race, and broken rotor bar defects in an induction motor. In addition, the robustness of the proposed method against the disturbance introduced by the coupled pump's unbalanced power source and dry running is investigated. First, three‐phase current and voltage signals are separated by means of independent component analysis (ICA), then extracted features are combined by adopting neural networks, and finally, the system's health condition is evaluated. Experimental results indicate that data fusion based on neural networks can evaluate with high reliability the system's health condition and provide better robustness in the presence of disturbances.
ISSN:1751-8822
1751-8830