Understanding the Binding Induced Folding of Intrinsically Disordered Proteins by Protein Engineering: Caveats and Pitfalls

Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of...

Full description

Bibliographic Details
Main Authors: Francesca Malagrinò, Lorenzo Visconti, Livia Pagano, Angelo Toto, Francesca Troilo, Stefano Gianni
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:International Journal of Molecular Sciences
Subjects:
IDP
Online Access:https://www.mdpi.com/1422-0067/21/10/3484
Description
Summary:Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of great importance to establish the general grounds to understand how such folding processes may be explored. Here we discuss the caveats and the pitfalls arising when applying to IDPs one of the key techniques to characterize the folding of globular proteins, the Φ value analysis. This method is based on measurements of the free energy changes of transition and native states upon conservative, non-disrupting, mutations. On the basis of available data, we reinforce the validity of Φ value analysis in the study of IDPs and suggest future experiments to further validate this powerful experimental method.
ISSN:1661-6596
1422-0067