Regularity of solutions to 3-D nematic liquid crystal flows
In this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $uin L^{q}(0,T;L^p(mathbb{R}^3))$, $frac{2}{q}+frac{3}{p}leq1$, $3<pleqinfty$; or $uin L^{alpha}(0,T;L^{eta}(mathbb{R}^3))$, $frac{2}{alpha}+frac{3}{eta}leq 2$, $frac{3}{2}&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2010-12-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2010/173/abstr.html |