Regularity of solutions to 3-D nematic liquid crystal flows

In this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $uin L^{q}(0,T;L^p(mathbb{R}^3))$, $frac{2}{q}+frac{3}{p}leq1$, $3<pleqinfty$; or $uin L^{alpha}(0,T;L^{eta}(mathbb{R}^3))$, $frac{2}{alpha}+frac{3}{eta}leq 2$, $frac{3}{2}&...

Full description

Bibliographic Details
Main Authors: Qiao Liu, Shangbin Cui
Format: Article
Language:English
Published: Texas State University 2010-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/173/abstr.html