Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges

Abstract An emerging tool in the fight against the high prevalence of micronutrient deficiencies in sub‐Saharan Africa is the production of nutritionally enhanced staple food products, through food‐to‐food fortification with micronutrient‐dense fruits and vegetables. This study investigated food‐to‐...

Full description

Bibliographic Details
Main Author: Johanita Kruger
Format: Article
Language:English
Published: Wiley 2020-07-01
Series:Food Science & Nutrition
Subjects:
Online Access:https://doi.org/10.1002/fsn3.1576
id doaj-1b4032a96ee94621972db586f013a455
record_format Article
spelling doaj-1b4032a96ee94621972db586f013a4552020-11-25T02:48:37ZengWileyFood Science & Nutrition2048-71772020-07-01873190319910.1002/fsn3.1576Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridgesJohanita Kruger0Institute of Nutritional Sciences University of Hohenheim Stuttgart GermanyAbstract An emerging tool in the fight against the high prevalence of micronutrient deficiencies in sub‐Saharan Africa is the production of nutritionally enhanced staple food products, through food‐to‐food fortification with micronutrient‐dense fruits and vegetables. This study investigated food‐to‐food fortification with cowpea leaves (CL) and orange‐fleshed sweet potato (OFSP) in combination with conventional micronutrient fortification and fermentation on the mineral and antinutrient contents and Caco‐2 cellular uptake of iron and zinc from ready‐to‐eat maize porridges. The amount of iron and zinc taken up from maize porridges (0.05 and 0.06 mg/100 g, db, respectively) was increased more after fortification with CL, compared to OFSP (0.32 and 0.23 mg/100 g, db versus. 0.11 and 0.04 mg/100 g, db, respectively). Despite the moderate cellular uptakes of iron and zinc from the CL fortified porridges (2.71% and 3.10%, respectively) compared to the OFSP fortified porridges (6.51% and 5.22%, respectively), the CL fortified porridges had much higher high iron and zinc contents (12.2–14.1 and 7.6–8.9 mg/100 g, db versus. 2.1–3.7 and 1.5–2.7 mg/100 g, db, respectively). This highlights the importance of increasing both the mineral content and bioavailability when fortifying a product. Even when a food product contains substantial antinutrients such as CL, if the mineral content and contents of bioavailability enhancers are high enough, the amounts of bioavailable iron and zinc can still be improved.https://doi.org/10.1002/fsn3.1576cowpea leavesfood‐to‐food fortificationironmaizeorange‐fleshed sweet potatozinc
collection DOAJ
language English
format Article
sources DOAJ
author Johanita Kruger
spellingShingle Johanita Kruger
Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
Food Science & Nutrition
cowpea leaves
food‐to‐food fortification
iron
maize
orange‐fleshed sweet potato
zinc
author_facet Johanita Kruger
author_sort Johanita Kruger
title Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
title_short Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
title_full Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
title_fullStr Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
title_full_unstemmed Potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
title_sort potential of food‐to‐food fortification with cowpea leaves and orange‐fleshed sweet potato, in combination with conventional fortification, to improve the cellular uptake of iron and zinc from ready‐to‐eat maize porridges
publisher Wiley
series Food Science & Nutrition
issn 2048-7177
publishDate 2020-07-01
description Abstract An emerging tool in the fight against the high prevalence of micronutrient deficiencies in sub‐Saharan Africa is the production of nutritionally enhanced staple food products, through food‐to‐food fortification with micronutrient‐dense fruits and vegetables. This study investigated food‐to‐food fortification with cowpea leaves (CL) and orange‐fleshed sweet potato (OFSP) in combination with conventional micronutrient fortification and fermentation on the mineral and antinutrient contents and Caco‐2 cellular uptake of iron and zinc from ready‐to‐eat maize porridges. The amount of iron and zinc taken up from maize porridges (0.05 and 0.06 mg/100 g, db, respectively) was increased more after fortification with CL, compared to OFSP (0.32 and 0.23 mg/100 g, db versus. 0.11 and 0.04 mg/100 g, db, respectively). Despite the moderate cellular uptakes of iron and zinc from the CL fortified porridges (2.71% and 3.10%, respectively) compared to the OFSP fortified porridges (6.51% and 5.22%, respectively), the CL fortified porridges had much higher high iron and zinc contents (12.2–14.1 and 7.6–8.9 mg/100 g, db versus. 2.1–3.7 and 1.5–2.7 mg/100 g, db, respectively). This highlights the importance of increasing both the mineral content and bioavailability when fortifying a product. Even when a food product contains substantial antinutrients such as CL, if the mineral content and contents of bioavailability enhancers are high enough, the amounts of bioavailable iron and zinc can still be improved.
topic cowpea leaves
food‐to‐food fortification
iron
maize
orange‐fleshed sweet potato
zinc
url https://doi.org/10.1002/fsn3.1576
work_keys_str_mv AT johanitakruger potentialoffoodtofoodfortificationwithcowpealeavesandorangefleshedsweetpotatoincombinationwithconventionalfortificationtoimprovethecellularuptakeofironandzincfromreadytoeatmaizeporridges
_version_ 1715382567497105408