Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents
<strong>Background:</strong> The airway inflammatory response is likely the mechanism for adverse health effects related to exposure to air pollution. Increased ventilation rates during physical activity in the presence of air pollution increases the inhaled dose of pollutants. However,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Georgia Southern University
2016-10-01
|
Series: | Journal of the Georgia Public Health Association |
Subjects: | |
Online Access: | https://digitalcommons.georgiasouthern.edu/jgpha/vol6/iss5/19 |
id |
doaj-1b310fa5fc0a4955b28ec8557d4b3329 |
---|---|
record_format |
Article |
spelling |
doaj-1b310fa5fc0a4955b28ec8557d4b33292021-01-15T20:01:53ZengGeorgia Southern UniversityJournal of the Georgia Public Health Association2471-97732016-10-016510.21633/jgpha.6.2s19Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescentsEmily PasalicMatthew HayatRoby Greenwald<strong>Background:</strong> The airway inflammatory response is likely the mechanism for adverse health effects related to exposure to air pollution. Increased ventilation rates during physical activity in the presence of air pollution increases the inhaled dose of pollutants. However, physical activity may moderate the relationship between air pollution and the inflammatory response. The present study aimed to characterize, among healthy adolescents, the relationship between dose of inhaled air pollution, physical activity, and markers of lung function, oxidative stress, and airway inflammation. <strong>Methods:</strong> With a non-probability sample of adolescents, this observational study estimated the association between air pollution dose and outcome measures by use of general linear mixed models with an unstructured covariance structure and a random intercept for subjects to account for repeated measures within subjects. <strong>Results:</strong> A one interquartile range (IQR) (i.e., 345.64 µg) increase in ozone (O3) inhaled dose was associated with a 29.16% average decrease in the percentage of total oxidized compounds (%Oxidized). A one IQR (i.e., 2.368E+10 particle) increase in total particle number count in the inhaled dose (PNT) was associated with an average decrease in forced expiratory flow (FEF25-75) of 0.168 L/second. Increasing activity levels attenuated the relationship between PNT inhaled dose and exhaled nitric oxide (eNO). The relationship between O3 inhaled dose and percent oxidized exhaled breath condensate cystine (%CYSS) was attenuated by activity level, with increasing activity levels corresponding to smaller changes from baseline for a constant O3 inhaled dose. <strong>Conclusions:</strong> The moderating effects of activity level suggest that peaks of high concentration doses of air pollution may overwhelm the endogenous redox balance of cells, resulting in increased airway inflammation. Further research that examines the relationships between dose peaks over time and inflammation could help to determine whether a high concentration dose over a short period of time has a different effect than a lower concentration dose over a longer period of time.https://digitalcommons.georgiasouthern.edu/jgpha/vol6/iss5/19air pollutionphysical activityadolescentsinhaled dose |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Emily Pasalic Matthew Hayat Roby Greenwald |
spellingShingle |
Emily Pasalic Matthew Hayat Roby Greenwald Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents Journal of the Georgia Public Health Association air pollution physical activity adolescents inhaled dose |
author_facet |
Emily Pasalic Matthew Hayat Roby Greenwald |
author_sort |
Emily Pasalic |
title |
Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents |
title_short |
Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents |
title_full |
Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents |
title_fullStr |
Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents |
title_full_unstemmed |
Air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents |
title_sort |
air pollution, physical activity, and markers of acute airway oxidative stress and inflammation in adolescents |
publisher |
Georgia Southern University |
series |
Journal of the Georgia Public Health Association |
issn |
2471-9773 |
publishDate |
2016-10-01 |
description |
<strong>Background:</strong> The airway inflammatory response is likely the mechanism for adverse health effects related to exposure to air pollution. Increased ventilation rates during physical activity in the presence of air pollution increases the inhaled dose of pollutants. However, physical activity may moderate the relationship between air pollution and the inflammatory response. The present study aimed to characterize, among healthy adolescents, the relationship between dose of inhaled air pollution, physical activity, and markers of lung function, oxidative stress, and airway inflammation.
<strong>Methods:</strong> With a non-probability sample of adolescents, this observational study estimated the association between air pollution dose and outcome measures by use of general linear mixed models with an unstructured covariance structure and a random intercept for subjects to account for repeated measures within subjects.
<strong>Results:</strong> A one interquartile range (IQR) (i.e., 345.64 µg) increase in ozone (O3) inhaled dose was associated with a 29.16% average decrease in the percentage of total oxidized compounds (%Oxidized). A one IQR (i.e., 2.368E+10 particle) increase in total particle number count in the inhaled dose (PNT) was associated with an average decrease in forced expiratory flow (FEF25-75) of 0.168 L/second. Increasing activity levels attenuated the relationship between PNT inhaled dose and exhaled nitric oxide (eNO). The relationship between O3 inhaled dose and percent oxidized exhaled breath condensate cystine (%CYSS) was attenuated by activity level, with increasing activity levels corresponding to smaller changes from baseline for a constant O3 inhaled dose.
<strong>Conclusions:</strong> The moderating effects of activity level suggest that peaks of high concentration doses of air pollution may overwhelm the endogenous redox balance of cells, resulting in increased airway inflammation. Further research that examines the relationships between dose peaks over time and inflammation could help to determine whether a high concentration dose over a short period of time has a different effect than a lower concentration dose over a longer period of time. |
topic |
air pollution physical activity adolescents inhaled dose |
url |
https://digitalcommons.georgiasouthern.edu/jgpha/vol6/iss5/19 |
work_keys_str_mv |
AT emilypasalic airpollutionphysicalactivityandmarkersofacuteairwayoxidativestressandinflammationinadolescents AT matthewhayat airpollutionphysicalactivityandmarkersofacuteairwayoxidativestressandinflammationinadolescents AT robygreenwald airpollutionphysicalactivityandmarkersofacuteairwayoxidativestressandinflammationinadolescents |
_version_ |
1724336334349271040 |