Design of smart wetting of building materials as evaporative cooling measure for improving the urban climate during heat waves

An urban microclimate model is used to design a smart wetting protocol for multilayer street pavements in order to maximize the evaporative cooling effect as a mitigation measure for thermal discomfort during heat waves. The microclimate model covers a computational fluid dynamics (CFD) model for so...

Full description

Bibliographic Details
Main Authors: Ferrari Andrea, Kubilay Aytac, Derome Dominique, Carmeliet Jan
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/32/e3sconf_nsb2020_03001.pdf
Description
Summary:An urban microclimate model is used to design a smart wetting protocol for multilayer street pavements in order to maximize the evaporative cooling effect as a mitigation measure for thermal discomfort during heat waves. The microclimate model covers a computational fluid dynamics (CFD) model for solving the turbulent air, heat and moisture flow in the air domain of a street canyon. The CFD model is coupled to a model for heat and moisture transport in porous urban materials, to a radiative exchange model, determining the net solar and longwave radiation on each urban surface and to a wind driven rain model able to determine the wetting flux on each surface during a rain event. We first evaluate the evaporative cooling potential for different pavement systems during normal summer conditions after a long rain event during night in order to select an optimal pavement system. Then, we design a smart wetting protocol answering the questions ‘when’, ‘how much’ and ‘how long’ a pavement should be artificially wetted for having a maximum cooling effect. We found that a daily amount of 5mm wetting over 10 minutes in the morning, preferentially between 8:00 and 10:00 am, guarantees a maximal evaporative cooling for one day and night during a heat wave.
ISSN:2267-1242