Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal

Climate change poses significant challenges to hydropower development and management in mountainous basins. This study examined the impact of climate change, and the associated risks, on the energy production of the Upper Tamakoshi Hydropower Project, which is located in the Tamakoshi basin of Nepal...

Full description

Bibliographic Details
Main Authors: Sangam Shrestha, Ajay Ratna Bajracharya, Mukand S. Babel
Format: Article
Language:English
Published: Elsevier 2016-01-01
Series:Climate Risk Management
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2212096316300274
Description
Summary:Climate change poses significant challenges to hydropower development and management in mountainous basins. This study examined the impact of climate change, and the associated risks, on the energy production of the Upper Tamakoshi Hydropower Project, which is located in the Tamakoshi basin of Nepal. The outputs of three GCMs—namely MIROC-ESM, MRI-CGCM3, and MPI-ESM-M—under the Representative Concentration Pathways (RCP) scenarios were used for the projection of precipitation and temperature in the future. The minimum and maximum temperatures of the basin are projected to increase by 6.33 °C and 3.82 °C, respectively, by 2100. The projected precipitation varies from −8% to +24.8%, which is expected to alter the streamflow by −37.83% to +47% in the future. Based on the streamflow output, the risk for energy production was calculated with respect to the baseline energy production of 1963 GW h and 2281 GW h. Using the three GCMs, the risk associated with annual hydropower production under altered runoff was analyzed. The risk percentage in the future periods shows a mild risk varying from 0.69% to 6.63%. MPI-ESM-M GCM projects a higher percentage of risk for energy production during the same future periods, as compared to the baseline energy production of 1963 GW h. A mild to moderate risk, ranging from 2.73% to 13.24% can be expected when energy production in the future is compared to the baseline energy production of 2281 GW h.
ISSN:2212-0963