Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly
One of the six selected concepts to be part of Generation IV nuclear reactors is the Supercritical Light Water Cooled Reactor. The High-Performance Light Water Reactor (HPLWR) is the European version and it is a very promising design. In recent years, interest in the study of thorium-based fuel cycl...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Center for Development of Nuclear Informatics, National Nuclear Energy Agency (BATAN)
2021-08-01
|
Series: | Atom Indonesia |
Subjects: | |
Online Access: | https://aij.batan.go.id/index.php/aij/article/view/1081 |
id |
doaj-1b18b20351064e1a966b779f9d2a99b9 |
---|---|
record_format |
Article |
spelling |
doaj-1b18b20351064e1a966b779f9d2a99b92021-08-12T06:00:40ZengCenter for Development of Nuclear Informatics, National Nuclear Energy Agency (BATAN)Atom Indonesia0126-15682021-08-0147214115010.17146/aij.2021.1081449Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel AssemblyY. Pérez0C. R. García1F. L. Mena2L. Castro3lnstituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Ave. Salvador Allende No. 1110, Quinta de los Molinos, La Habana 10400, Cubalnstituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Ave. Salvador Allende No. 1110, Quinta de los Molinos, La Habana 10400, Cubalnstituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Ave. Salvador Allende No. 1110, Quinta de los Molinos, La Habana 10400, Cuba2Universidad Nacional Autónoma de México, Facultad de Ingeniería, Departamento de Sistemas Energéticos, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos, MéxicoOne of the six selected concepts to be part of Generation IV nuclear reactors is the Supercritical Light Water Cooled Reactor. The High-Performance Light Water Reactor (HPLWR) is the European version and it is a very promising design. In recent years, interest in the study of thorium-based fuel cycles has been renewed and its possibilities for current LWRs have been evaluated. The use of thorium-based fuels will be fundamental in the future sustainability of nuclear energy, since in addition to its abundance in nature, thorium has an important group of advantages. In this paper, performance of thorium-based fuels in the typical fuel assembly of the HPLWR reactor is evaluated, using a computational model based on CFD and Monte Carlo codes for the neutronic/thermal-hydraulic coupled analysis. The volumetric power density profiles, coolant temperature profiles, fuel temperature profiles and others are compared with those obtained for standard UO2 fuel. When the thorium-based fuels are used, the obtained infinite multiplication coefficients are smaller than the value obtained when UO2 is used, since the 232Th isotope has a lower contribution to the multiplicative properties of the medium than 238U. As a result, a difference of approximately 12 000 pcm was observed. The results verified that the HPLWR is a thermal reactor with a hard spectrum. There are no notable changes in the neutron spectrum if the mass fraction of thorium is slightly varied. With coupled analysis, the potential benefits of the utilization of thorium-based fuels were verified. Moreover, a significant temperature decrease by 136 K on the center line of the fuel elements was observed. When the mass fraction of thorium increases in the oxides mixture, the weighted average temperature on the fuel elements decreases.https://aij.batan.go.id/index.php/aij/article/view/1081supercritical waterhplwrcfdthorium-based fuelsneutronic/thermal-hydraulic coupled analysis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Y. Pérez C. R. García F. L. Mena L. Castro |
spellingShingle |
Y. Pérez C. R. García F. L. Mena L. Castro Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly Atom Indonesia supercritical water hplwr cfd thorium-based fuels neutronic/thermal-hydraulic coupled analysis |
author_facet |
Y. Pérez C. R. García F. L. Mena L. Castro |
author_sort |
Y. Pérez |
title |
Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly |
title_short |
Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly |
title_full |
Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly |
title_fullStr |
Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly |
title_full_unstemmed |
Coupled Analysis of Thorium-based Fuels in the High-Performance Light Water Reactor Fuel Assembly |
title_sort |
coupled analysis of thorium-based fuels in the high-performance light water reactor fuel assembly |
publisher |
Center for Development of Nuclear Informatics, National Nuclear Energy Agency (BATAN) |
series |
Atom Indonesia |
issn |
0126-1568 |
publishDate |
2021-08-01 |
description |
One of the six selected concepts to be part of Generation IV nuclear reactors is the Supercritical Light Water Cooled Reactor. The High-Performance Light Water Reactor (HPLWR) is the European version and it is a very promising design. In recent years, interest in the study of thorium-based fuel cycles has been renewed and its possibilities for current LWRs have been evaluated. The use of thorium-based fuels will be fundamental in the future sustainability of nuclear energy, since in addition to its abundance in nature, thorium has an important group of advantages. In this paper, performance of thorium-based fuels in the typical fuel assembly of the HPLWR reactor is evaluated, using a computational model based on CFD and Monte Carlo codes for the neutronic/thermal-hydraulic coupled analysis. The volumetric power density profiles, coolant temperature profiles, fuel temperature profiles and others are compared with those obtained for standard UO2 fuel. When the thorium-based fuels are used, the obtained infinite multiplication coefficients are smaller than the value obtained when UO2 is used, since the 232Th isotope has a lower contribution to the multiplicative properties of the medium than 238U. As a result, a difference of approximately 12 000 pcm was observed. The results verified that the HPLWR is a thermal reactor with a hard spectrum. There are no notable changes in the neutron spectrum if the mass fraction of thorium is slightly varied. With coupled analysis, the potential benefits of the utilization of thorium-based fuels were verified. Moreover, a significant temperature decrease by 136 K on the center line of the fuel elements was observed. When the mass fraction of thorium increases in the oxides mixture, the weighted average temperature on the fuel elements decreases. |
topic |
supercritical water hplwr cfd thorium-based fuels neutronic/thermal-hydraulic coupled analysis |
url |
https://aij.batan.go.id/index.php/aij/article/view/1081 |
work_keys_str_mv |
AT yperez coupledanalysisofthoriumbasedfuelsinthehighperformancelightwaterreactorfuelassembly AT crgarcia coupledanalysisofthoriumbasedfuelsinthehighperformancelightwaterreactorfuelassembly AT flmena coupledanalysisofthoriumbasedfuelsinthehighperformancelightwaterreactorfuelassembly AT lcastro coupledanalysisofthoriumbasedfuelsinthehighperformancelightwaterreactorfuelassembly |
_version_ |
1721209738964762624 |