Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits
In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | E3S Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/e3sconf/20160906004 |
id |
doaj-1af058de0123415c95784647fcf8bcc0 |
---|---|
record_format |
Article |
spelling |
doaj-1af058de0123415c95784647fcf8bcc02021-02-02T07:51:23ZengEDP SciencesE3S Web of Conferences2267-12422016-01-0190600410.1051/e3sconf/20160906004e3sconf_eunsat2016_06004Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil depositsBaille Wiebke0Jebeli Alireza1Schanz Tom2Ruhr-University Bochum, Chair of Foundation Engineering, Soil and Rock MechanicsRuhr-University Bochum, Chair of Foundation Engineering, Soil and Rock MechanicsRuhr-University Bochum, Chair of Foundation Engineering, Soil and Rock MechanicsIn the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains) during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC) technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio) and the voids inside the pseudo-grains (matrix void ratio). The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.http://dx.doi.org/10.1051/e3sconf/20160906004 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Baille Wiebke Jebeli Alireza Schanz Tom |
spellingShingle |
Baille Wiebke Jebeli Alireza Schanz Tom Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits E3S Web of Conferences |
author_facet |
Baille Wiebke Jebeli Alireza Schanz Tom |
author_sort |
Baille Wiebke |
title |
Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits |
title_short |
Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits |
title_full |
Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits |
title_fullStr |
Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits |
title_full_unstemmed |
Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits |
title_sort |
effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits |
publisher |
EDP Sciences |
series |
E3S Web of Conferences |
issn |
2267-1242 |
publishDate |
2016-01-01 |
description |
In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains) during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC) technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio) and the voids inside the pseudo-grains (matrix void ratio). The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling. |
url |
http://dx.doi.org/10.1051/e3sconf/20160906004 |
work_keys_str_mv |
AT baillewiebke effectofporesizedistributiononthecollapsebehaviourofanthropogenicsandysoildeposits AT jebelialireza effectofporesizedistributiononthecollapsebehaviourofanthropogenicsandysoildeposits AT schanztom effectofporesizedistributiononthecollapsebehaviourofanthropogenicsandysoildeposits |
_version_ |
1724298379292311552 |