A New Biobjective Model to Optimize Integrated Redundancy Allocation and Reliability-Centered Maintenance Problems in a System Using Metaheuristics
A novel integrated model is proposed to optimize the redundancy allocation problem (RAP) and the reliability-centered maintenance (RCM) simultaneously. A system of both repairable and nonrepairable components has been considered. In this system, electronic components are nonrepairable while mechanic...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2015/396864 |
Summary: | A novel integrated model is proposed to optimize the redundancy allocation problem (RAP) and the reliability-centered maintenance (RCM) simultaneously. A system of both repairable and nonrepairable components has been considered. In this system, electronic components are nonrepairable while mechanical components are mostly repairable. For nonrepairable components, a redundancy allocation problem is dealt with to determine optimal redundancy strategy and number of redundant components to be implemented in each subsystem. In addition, a maintenance scheduling problem is considered for repairable components in order to identify the best maintenance policy and optimize system reliability. Both active and cold standby redundancy strategies have been taken into account for electronic components. Also, net present value of the secondary cost including operational and maintenance costs has been calculated. The problem is formulated as a biobjective mathematical programming model aiming to reach a tradeoff between system reliability and cost. Three metaheuristic algorithms are employed to solve the proposed model: Nondominated Sorting Genetic Algorithm (NSGA-II), Multiobjective Particle Swarm Optimization (MOPSO), and Multiobjective Firefly Algorithm (MOFA). Several test problems are solved using the mentioned algorithms to test efficiency and effectiveness of the solution approaches and obtained results are analyzed. |
---|---|
ISSN: | 1024-123X 1563-5147 |