Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories

Abstract We compute the Hagedorn temperature of μT T ¯ $$ \mu T\overline{T} $$ + ε + J T ¯ $$ {\varepsilon}_{+}J\overline{T} $$ + ε − T J ¯ $$ {\varepsilon}_{-}T\overline{J} $$ deformed CFT using the universal kernel formula for the thermal partition function. We find a closed analytic expression fo...

Full description

Bibliographic Details
Main Authors: Soumangsu Chakraborty, Akikazu Hashimoto
Format: Article
Language:English
Published: SpringerOpen 2020-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2020)188
id doaj-1adc04fe86794da0bbafb78134815437
record_format Article
spelling doaj-1adc04fe86794da0bbafb781348154372020-11-25T03:18:49ZengSpringerOpenJournal of High Energy Physics1029-84792020-07-012020711710.1007/JHEP07(2020)188Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theoriesSoumangsu Chakraborty0Akikazu Hashimoto1Department of Theoretical Physics, Tata Institute for Fundamental ResearchDepartment of Physics, University of WisconsinAbstract We compute the Hagedorn temperature of μT T ¯ $$ \mu T\overline{T} $$ + ε + J T ¯ $$ {\varepsilon}_{+}J\overline{T} $$ + ε − T J ¯ $$ {\varepsilon}_{-}T\overline{J} $$ deformed CFT using the universal kernel formula for the thermal partition function. We find a closed analytic expression for the free energy and the Hagedorn temperature as a function of μ, ε +, and ε − for the case of a compact scalar boson by taking the large volume limit. We also compute the Hagedorn temperature for the single trace deformed AdS 3 × S 1 × T 3 × S 3 using holographic methods. We identify black hole configurations whose thermodynamics matches the functional dependence on (μ, ε + , ε − ) of the double trace deformed compact scalars.http://link.springer.com/article/10.1007/JHEP07(2020)188AdS-CFT CorrespondenceField Theories in Lower DimensionsIntegrable Field TheoriesRenormalization Group
collection DOAJ
language English
format Article
sources DOAJ
author Soumangsu Chakraborty
Akikazu Hashimoto
spellingShingle Soumangsu Chakraborty
Akikazu Hashimoto
Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
Journal of High Energy Physics
AdS-CFT Correspondence
Field Theories in Lower Dimensions
Integrable Field Theories
Renormalization Group
author_facet Soumangsu Chakraborty
Akikazu Hashimoto
author_sort Soumangsu Chakraborty
title Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
title_short Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
title_full Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
title_fullStr Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
title_full_unstemmed Thermodynamics of T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ , J T ¯ $$ \mathrm{J}\overline{\mathrm{T}} $$ , T J ¯ $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
title_sort thermodynamics of t t ¯ $$ \mathrm{t}\overline{\mathrm{t}} $$ , j t ¯ $$ \mathrm{j}\overline{\mathrm{t}} $$ , t j ¯ $$ \mathrm{t}\overline{\mathrm{j}} $$ deformed conformal field theories
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2020-07-01
description Abstract We compute the Hagedorn temperature of μT T ¯ $$ \mu T\overline{T} $$ + ε + J T ¯ $$ {\varepsilon}_{+}J\overline{T} $$ + ε − T J ¯ $$ {\varepsilon}_{-}T\overline{J} $$ deformed CFT using the universal kernel formula for the thermal partition function. We find a closed analytic expression for the free energy and the Hagedorn temperature as a function of μ, ε +, and ε − for the case of a compact scalar boson by taking the large volume limit. We also compute the Hagedorn temperature for the single trace deformed AdS 3 × S 1 × T 3 × S 3 using holographic methods. We identify black hole configurations whose thermodynamics matches the functional dependence on (μ, ε + , ε − ) of the double trace deformed compact scalars.
topic AdS-CFT Correspondence
Field Theories in Lower Dimensions
Integrable Field Theories
Renormalization Group
url http://link.springer.com/article/10.1007/JHEP07(2020)188
work_keys_str_mv AT soumangsuchakraborty thermodynamicsofttmathrmtoverlinemathrmtjtmathrmjoverlinemathrmttjmathrmtoverlinemathrmjdeformedconformalfieldtheories
AT akikazuhashimoto thermodynamicsofttmathrmtoverlinemathrmtjtmathrmjoverlinemathrmttjmathrmtoverlinemathrmjdeformedconformalfieldtheories
_version_ 1724625654464380928