Fourier Analysis with Generalized Integration

We generalize the classic Fourier transform operator <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">F</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula> by us...

Full description

Bibliographic Details
Main Authors: Juan H. Arredondo, Manuel Bernal, María Guadalupe Morales
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/7/1199
Description
Summary:We generalize the classic Fourier transform operator <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">F</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula> by using the Henstock–Kurzweil integral theory. It is shown that the operator equals the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mi>K</mi> </mrow> </semantics> </math> </inline-formula>-Fourier transform on a dense subspace of <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="script">L</mi> <mi>p</mi> </msup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo><</mo> <mi>p</mi> <mo>≤</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">F</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> under more general conditions than in Lebesgue’s theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue’s theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.
ISSN:2227-7390