Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113

We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard ma...

Full description

Bibliographic Details
Main Authors: Balonin N. A., Ðokovic D. Ž., Karbovskiy D. A.
Format: Article
Language:English
Published: De Gruyter 2018-01-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2018-0002
id doaj-1acab1266db444d4a101196519df9854
record_format Article
spelling doaj-1acab1266db444d4a101196519df98542021-10-02T19:10:39ZengDe GruyterSpecial Matrices2300-74512018-01-0161112210.1515/spma-2018-0002spma-2018-0002Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113Balonin N. A.0Ðokovic D. Ž.1Karbovskiy D. A.2Saint-Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, Saint-Petersburg, Russian FederationUniversity of Waterloo, Department of Pure Mathematics and Institute for Quantum Computing, Waterloo, Ontario, N2L 3G1, CanadaSaint-Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, Saint-Petersburg, Russian FederationWe continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of order 4v are known are the following: 47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119. By using the propus construction, we found several symmetric Hadamard matrices of order 4v for v = 47, 73, 113.https://doi.org/10.1515/spma-2018-0002symmetric hadamard matricespropus arraycyclic difference familiesdiophantine equations
collection DOAJ
language English
format Article
sources DOAJ
author Balonin N. A.
Ðokovic D. Ž.
Karbovskiy D. A.
spellingShingle Balonin N. A.
Ðokovic D. Ž.
Karbovskiy D. A.
Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113
Special Matrices
symmetric hadamard matrices
propus array
cyclic difference families
diophantine equations
author_facet Balonin N. A.
Ðokovic D. Ž.
Karbovskiy D. A.
author_sort Balonin N. A.
title Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113
title_short Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113
title_full Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113
title_fullStr Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113
title_full_unstemmed Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113
title_sort construction of symmetric hadamard matrices of order 4v for v = 47, 73, 113
publisher De Gruyter
series Special Matrices
issn 2300-7451
publishDate 2018-01-01
description We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of order 4v are known are the following: 47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119. By using the propus construction, we found several symmetric Hadamard matrices of order 4v for v = 47, 73, 113.
topic symmetric hadamard matrices
propus array
cyclic difference families
diophantine equations
url https://doi.org/10.1515/spma-2018-0002
work_keys_str_mv AT baloninna constructionofsymmetrichadamardmatricesoforder4vforv4773113
AT ðokovicdz constructionofsymmetrichadamardmatricesoforder4vforv4773113
AT karbovskiyda constructionofsymmetrichadamardmatricesoforder4vforv4773113
_version_ 1716848023341891584