Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine
Ethanol is the most extensively used oxygenate for spark ignition (SI) engines. In comparison with ethanol, n-butanol exhibits a number of desirable properties for use in SI engines, which has proved to be a very promising oxygenated alternative fuel in recent years. However, the dehydration and rec...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Chemistry |
Online Access: | http://dx.doi.org/10.1155/2020/7468651 |
id |
doaj-1ac9295f1f524f90924c82c9a163a679 |
---|---|
record_format |
Article |
spelling |
doaj-1ac9295f1f524f90924c82c9a163a6792020-11-25T01:37:43ZengHindawi LimitedJournal of Chemistry2090-90632090-90712020-01-01202010.1155/2020/74686517468651Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition EngineGang Wu0Deng Wu1Yuelin Li2Lei Meng3College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, ChinaCollege of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, ChinaCollege of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, ChinaSchool of Automation, Wuhan University of Technology, Wuhan 430070, ChinaEthanol is the most extensively used oxygenate for spark ignition (SI) engines. In comparison with ethanol, n-butanol exhibits a number of desirable properties for use in SI engines, which has proved to be a very promising oxygenated alternative fuel in recent years. However, the dehydration and recovery of bio-n-butanol consume extra money and energy in the acetone-n-butanol-ethanol (ABE) fermentation process. Hence, we focus on the research of ABE as a potential oxygenated alternative fuel in SI engines. The combustion, performance, and emission characteristics of B30, E30, ABE30 (i.e., 30 vol.% n-butanol, ethanol, and ABE blended with 70 vol.% gasoline), and G100 (pure gasoline) were compared in this study. The comparison results between B30, E30, and ABE30 at stoichiometric conditions show that ABE30 presents retarded combustion phasing, higher brake thermal efficiency, lower CO emissions, higher UHC emissions, and similar NOx emissions. In comparison with G100 under various engine loads and equivalence ratios, for the most part, ABE30 exhibits 1.4% higher brake thermal efficiency, 14% lower carbon monoxide, 9.7% lower unburned hydrocarbons, and 23.4% lower nitrogen oxides. It is indicated that ABE could be served as the oxygenate in spark ignition engine due to its capability to improve energy efficiency and reduce pollutant emissions.http://dx.doi.org/10.1155/2020/7468651 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gang Wu Deng Wu Yuelin Li Lei Meng |
spellingShingle |
Gang Wu Deng Wu Yuelin Li Lei Meng Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine Journal of Chemistry |
author_facet |
Gang Wu Deng Wu Yuelin Li Lei Meng |
author_sort |
Gang Wu |
title |
Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine |
title_short |
Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine |
title_full |
Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine |
title_fullStr |
Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine |
title_full_unstemmed |
Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine |
title_sort |
effect of acetone-n-butanol-ethanol (abe) as an oxygenate on combustion, performance, and emission characteristics of a spark ignition engine |
publisher |
Hindawi Limited |
series |
Journal of Chemistry |
issn |
2090-9063 2090-9071 |
publishDate |
2020-01-01 |
description |
Ethanol is the most extensively used oxygenate for spark ignition (SI) engines. In comparison with ethanol, n-butanol exhibits a number of desirable properties for use in SI engines, which has proved to be a very promising oxygenated alternative fuel in recent years. However, the dehydration and recovery of bio-n-butanol consume extra money and energy in the acetone-n-butanol-ethanol (ABE) fermentation process. Hence, we focus on the research of ABE as a potential oxygenated alternative fuel in SI engines. The combustion, performance, and emission characteristics of B30, E30, ABE30 (i.e., 30 vol.% n-butanol, ethanol, and ABE blended with 70 vol.% gasoline), and G100 (pure gasoline) were compared in this study. The comparison results between B30, E30, and ABE30 at stoichiometric conditions show that ABE30 presents retarded combustion phasing, higher brake thermal efficiency, lower CO emissions, higher UHC emissions, and similar NOx emissions. In comparison with G100 under various engine loads and equivalence ratios, for the most part, ABE30 exhibits 1.4% higher brake thermal efficiency, 14% lower carbon monoxide, 9.7% lower unburned hydrocarbons, and 23.4% lower nitrogen oxides. It is indicated that ABE could be served as the oxygenate in spark ignition engine due to its capability to improve energy efficiency and reduce pollutant emissions. |
url |
http://dx.doi.org/10.1155/2020/7468651 |
work_keys_str_mv |
AT gangwu effectofacetonenbutanolethanolabeasanoxygenateoncombustionperformanceandemissioncharacteristicsofasparkignitionengine AT dengwu effectofacetonenbutanolethanolabeasanoxygenateoncombustionperformanceandemissioncharacteristicsofasparkignitionengine AT yuelinli effectofacetonenbutanolethanolabeasanoxygenateoncombustionperformanceandemissioncharacteristicsofasparkignitionengine AT leimeng effectofacetonenbutanolethanolabeasanoxygenateoncombustionperformanceandemissioncharacteristicsofasparkignitionengine |
_version_ |
1715713173554724864 |