Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review
Optimal pharmacotherapy in pediatric patients with suspected infections requires understanding and integration of relevant data on the antibiotic, bacterial pathogen, and patient characteristics. Because of age-related physiological maturation and non-maturational covariates (e.g., disease state, in...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-02-01
|
Series: | Frontiers in Pediatrics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fped.2021.624639/full |
id |
doaj-1ac6629dbb4b44ca84dd3e434699680f |
---|---|
record_format |
Article |
spelling |
doaj-1ac6629dbb4b44ca84dd3e434699680f2021-02-23T04:44:09ZengFrontiers Media S.A.Frontiers in Pediatrics2296-23602021-02-01910.3389/fped.2021.624639624639Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative ReviewAlan Abdulla0Angela E. Edwina1Robert B. Flint2Robert B. Flint3Karel Allegaert4Karel Allegaert5Karel Allegaert6Enno D. Wildschut7Birgit C. P. Koch8Matthijs de Hoog9Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, NetherlandsDepartment of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, NetherlandsDepartment of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, NetherlandsDivision of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, NetherlandsDepartment of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, NetherlandsDepartment of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, BelgiumDepartment of Development and Regeneration, KU Leuven, Leuven, BelgiumDepartment of Pediatric Intensive Care, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, NetherlandsDepartment of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, NetherlandsDepartment of Pediatric Intensive Care, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, NetherlandsOptimal pharmacotherapy in pediatric patients with suspected infections requires understanding and integration of relevant data on the antibiotic, bacterial pathogen, and patient characteristics. Because of age-related physiological maturation and non-maturational covariates (e.g., disease state, inflammation, organ failure, co-morbidity, co-medication and extracorporeal systems), antibiotic pharmacokinetics is highly variable in pediatric patients and difficult to predict without using population pharmacokinetics models. The intra- and inter-individual variability can result in under- or overexposure in a significant proportion of patients. Therapeutic drug monitoring typically covers assessment of pharmacokinetics and pharmacodynamics, and concurrent dose adaptation after initial standard dosing and drug concentration analysis. Model-informed precision dosing (MIPD) captures drug, disease, and patient characteristics in modeling approaches and can be used to perform Bayesian forecasting and dose optimization. Incorporating MIPD in the electronic patient record system brings pharmacometrics to the bedside of the patient, with the aim of a consisted and optimal drug exposure. In this narrative review, we evaluated studies assessing optimization of antibiotic pharmacotherapy using MIPD in pediatric populations. Four eligible studies involving amikacin and vancomycin were identified from 418 records. Key articles, independent of year of publication, were also selected to highlight important attributes of MIPD. Although very little research has been conducted until this moment, the available data on vancomycin indicate that MIPD is superior compared to conventional dosing strategies with respect to target attainment. The utility of MIPD in pediatrics needs to be further confirmed in frequently used antibiotic classes, particularly aminoglycosides and beta-lactams.https://www.frontiersin.org/articles/10.3389/fped.2021.624639/fullpediatricneonatesantibioticsmodel-informed precision dosingBayesiantherapeutic drug monitoring |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alan Abdulla Angela E. Edwina Robert B. Flint Robert B. Flint Karel Allegaert Karel Allegaert Karel Allegaert Enno D. Wildschut Birgit C. P. Koch Matthijs de Hoog |
spellingShingle |
Alan Abdulla Angela E. Edwina Robert B. Flint Robert B. Flint Karel Allegaert Karel Allegaert Karel Allegaert Enno D. Wildschut Birgit C. P. Koch Matthijs de Hoog Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review Frontiers in Pediatrics pediatric neonates antibiotics model-informed precision dosing Bayesian therapeutic drug monitoring |
author_facet |
Alan Abdulla Angela E. Edwina Robert B. Flint Robert B. Flint Karel Allegaert Karel Allegaert Karel Allegaert Enno D. Wildschut Birgit C. P. Koch Matthijs de Hoog |
author_sort |
Alan Abdulla |
title |
Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review |
title_short |
Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review |
title_full |
Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review |
title_fullStr |
Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review |
title_full_unstemmed |
Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review |
title_sort |
model-informed precision dosing of antibiotics in pediatric patients: a narrative review |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Pediatrics |
issn |
2296-2360 |
publishDate |
2021-02-01 |
description |
Optimal pharmacotherapy in pediatric patients with suspected infections requires understanding and integration of relevant data on the antibiotic, bacterial pathogen, and patient characteristics. Because of age-related physiological maturation and non-maturational covariates (e.g., disease state, inflammation, organ failure, co-morbidity, co-medication and extracorporeal systems), antibiotic pharmacokinetics is highly variable in pediatric patients and difficult to predict without using population pharmacokinetics models. The intra- and inter-individual variability can result in under- or overexposure in a significant proportion of patients. Therapeutic drug monitoring typically covers assessment of pharmacokinetics and pharmacodynamics, and concurrent dose adaptation after initial standard dosing and drug concentration analysis. Model-informed precision dosing (MIPD) captures drug, disease, and patient characteristics in modeling approaches and can be used to perform Bayesian forecasting and dose optimization. Incorporating MIPD in the electronic patient record system brings pharmacometrics to the bedside of the patient, with the aim of a consisted and optimal drug exposure. In this narrative review, we evaluated studies assessing optimization of antibiotic pharmacotherapy using MIPD in pediatric populations. Four eligible studies involving amikacin and vancomycin were identified from 418 records. Key articles, independent of year of publication, were also selected to highlight important attributes of MIPD. Although very little research has been conducted until this moment, the available data on vancomycin indicate that MIPD is superior compared to conventional dosing strategies with respect to target attainment. The utility of MIPD in pediatrics needs to be further confirmed in frequently used antibiotic classes, particularly aminoglycosides and beta-lactams. |
topic |
pediatric neonates antibiotics model-informed precision dosing Bayesian therapeutic drug monitoring |
url |
https://www.frontiersin.org/articles/10.3389/fped.2021.624639/full |
work_keys_str_mv |
AT alanabdulla modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT angelaeedwina modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT robertbflint modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT robertbflint modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT karelallegaert modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT karelallegaert modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT karelallegaert modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT ennodwildschut modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT birgitcpkoch modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview AT matthijsdehoog modelinformedprecisiondosingofantibioticsinpediatricpatientsanarrativereview |
_version_ |
1724255099264434176 |