Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area

The influence of trees on sound propagation is currently discussed to reduce the sound exposure near transport infrastructure or industrial areas. This influence is direct due to reflection and scattering at the trees themselves as well as indirect through meteorological and ground effects modified...

Full description

Bibliographic Details
Main Authors: Astrid Ziemann, Arthur Schady, Dietrich Heimann
Format: Article
Language:English
Published: Borntraeger 2016-06-01
Series:Meteorologische Zeitschrift
Subjects:
Online Access:http://dx.doi.org/10.1127/metz/2016/0710
id doaj-1ab800488b354e4286161e48c0dd4448
record_format Article
spelling doaj-1ab800488b354e4286161e48c0dd44482020-11-24T23:37:47ZengBorntraegerMeteorologische Zeitschrift0941-29482016-06-0125332733910.1127/metz/2016/071085530Meteorological effects on the 3D sound propagation inside an inhomogeneous forest areaAstrid ZiemannArthur SchadyDietrich HeimannThe influence of trees on sound propagation is currently discussed to reduce the sound exposure near transport infrastructure or industrial areas. This influence is direct due to reflection and scattering at the trees themselves as well as indirect through meteorological and ground effects modified by the trees. Previous investigations provide a mixed picture of sound attenuation within forested areas, in particular for the temporally and spatially variable meteorological influence. Thus, a three-dimensional model chain of atmospheric and acoustic models was adapted and applied to special meteorological and vegetation-specific conditions. A meteorological mesoscale model was applied to simulate temperature and wind fields within an inhomogeneous forest site. The meteorological quantities are used as diurnally variable input data for the acoustic FDTD (finite-difference time-domain)-model to simulate the sound propagation. Thereby, the effects of vegetation elements, impedance ground surface, and sound refraction are considered. The simulations are related to outdoor measurements, which were performed in early autumn 2011 near Dresden (Germany). The sound propagation of artificial signals was measured along sound paths of up to 190 m length through a clearing as well as through an old spruce stand. Results of the comparison between measurement and model simulations are presented and possible applications of these results with regard to noise protection aspects are discussed. The model results confirm the measured diurnal cycle of sound levels at the receiver positions. Simulations with and without trees suggest an excess attenuation of the trees by about 4 dB per 100 m already for low frequencies.http://dx.doi.org/10.1127/metz/2016/0710atmospheric acousticsforest meteorologysound propagationnoise protectionacoustic measurementsthree-dimensional acoustic model
collection DOAJ
language English
format Article
sources DOAJ
author Astrid Ziemann
Arthur Schady
Dietrich Heimann
spellingShingle Astrid Ziemann
Arthur Schady
Dietrich Heimann
Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
Meteorologische Zeitschrift
atmospheric acoustics
forest meteorology
sound propagation
noise protection
acoustic measurements
three-dimensional acoustic model
author_facet Astrid Ziemann
Arthur Schady
Dietrich Heimann
author_sort Astrid Ziemann
title Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
title_short Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
title_full Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
title_fullStr Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
title_full_unstemmed Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
title_sort meteorological effects on the 3d sound propagation inside an inhomogeneous forest area
publisher Borntraeger
series Meteorologische Zeitschrift
issn 0941-2948
publishDate 2016-06-01
description The influence of trees on sound propagation is currently discussed to reduce the sound exposure near transport infrastructure or industrial areas. This influence is direct due to reflection and scattering at the trees themselves as well as indirect through meteorological and ground effects modified by the trees. Previous investigations provide a mixed picture of sound attenuation within forested areas, in particular for the temporally and spatially variable meteorological influence. Thus, a three-dimensional model chain of atmospheric and acoustic models was adapted and applied to special meteorological and vegetation-specific conditions. A meteorological mesoscale model was applied to simulate temperature and wind fields within an inhomogeneous forest site. The meteorological quantities are used as diurnally variable input data for the acoustic FDTD (finite-difference time-domain)-model to simulate the sound propagation. Thereby, the effects of vegetation elements, impedance ground surface, and sound refraction are considered. The simulations are related to outdoor measurements, which were performed in early autumn 2011 near Dresden (Germany). The sound propagation of artificial signals was measured along sound paths of up to 190 m length through a clearing as well as through an old spruce stand. Results of the comparison between measurement and model simulations are presented and possible applications of these results with regard to noise protection aspects are discussed. The model results confirm the measured diurnal cycle of sound levels at the receiver positions. Simulations with and without trees suggest an excess attenuation of the trees by about 4 dB per 100 m already for low frequencies.
topic atmospheric acoustics
forest meteorology
sound propagation
noise protection
acoustic measurements
three-dimensional acoustic model
url http://dx.doi.org/10.1127/metz/2016/0710
work_keys_str_mv AT astridziemann meteorologicaleffectsonthe3dsoundpropagationinsideaninhomogeneousforestarea
AT arthurschady meteorologicaleffectsonthe3dsoundpropagationinsideaninhomogeneousforestarea
AT dietrichheimann meteorologicaleffectsonthe3dsoundpropagationinsideaninhomogeneousforestarea
_version_ 1725519164996583424