Summary: | Motion capture data are widely used in different research fields such as medical, entertainment, and industry. However, most motion researches using motion capture data are carried out in the time-domain. To understand human motion complexities, it is necessary to analyze motion data in the frequency-domain. In this paper, to analyze human motions, we present a framework to transform motions into the instantaneous frequency-domain using the Hilbert-Huang transform (HHT). The empirical mode decomposition (EMD) that is a part of HHT decomposes nonstationary and nonlinear signals captured from the real-world experiments into pseudo monochromatic signals, so-called intrinsic mode function (IMF). Our research reveals that the multivariate EMD can decompose complicated human motions into a finite number of nonlinear modes (IMFs) corresponding to distinct motion primitives. Analyzing these decomposed motions in Hilbert spectrum, motion characteristics can be extracted and visualized in instantaneous frequency-domain. For example, we apply our framework to (1) a jump motion, (2) a foot-injured gait, and (3) a golf swing motion.
|