Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent

Industrial effluents with high recalcitrants should undergo post-treatment after biological treatment. The aim of this study was to use cheap and abundantly available natural materials to develop heterogeneous Fenton catalysts for the removal of colored recalcitrants in molasses distillery wastewate...

Full description

Bibliographic Details
Main Author: Milton M. Arimi
Format: Article
Language:English
Published: Elsevier 2017-04-01
Series:Progress in Natural Science: Materials International
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1002007117301958
Description
Summary:Industrial effluents with high recalcitrants should undergo post-treatment after biological treatment. The aim of this study was to use cheap and abundantly available natural materials to develop heterogeneous Fenton catalysts for the removal of colored recalcitrants in molasses distillery wastewater (MDW). The pellets of zeolite, which is naturally available in many countries, were modified by pre-treatment with sulphuric acid, nitric acid and hydrochloric acid, before embedding on them the ferrous ions. The effects of pH and temperature on heterogeneous Fenton were studied using the modified catalysts. The sulphuric acid-ferrous modified catalysts showed the highest affectivity which achieved 90% color and 60% TOC (total organic carbon) removal at 150 g/L pellet catalyst dosage, 2 g/L H2O2 and 25 °C. The heterogeneous Fenton with the same catalyst caused improvement in the biodegradability of anaerobic effluent from 0.07 to 0.55. The catalyst was also applied to pre-treat the raw MDW and increased it's biodegradability by 4%. The color of the resultant anaerobic effluent was also reduced. The kinetics of total TOC removal was found to depend on operation temperature. It was best described by simultaneous first and second order kinetics model for the initial reaction and second order model for the rest of the reaction.
ISSN:1002-0071