Development and implementation of the GIT-modelling bioreactor system: the way to reducing a carbon footprint

The purpose of this article is to analyze and compare the carbon footprint value between «in vivo» and «in vitro» microbiological experiments in chicken GIT. The SHIME-style bioreactor for modeling the processes occurring in the gastrointestinal tract of chickens is developed. For «in vitro» estimat...

Full description

Bibliographic Details
Main Authors: Danila Donskoy, Oleg Katin, Ludmila Alekseenko
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/55/e3sconf_eeests2021_01030.pdf
Description
Summary:The purpose of this article is to analyze and compare the carbon footprint value between «in vivo» and «in vitro» microbiological experiments in chicken GIT. The SHIME-style bioreactor for modeling the processes occurring in the gastrointestinal tract of chickens is developed. For «in vitro» estimation – use analytic and experimental results, carrying out on developed chicken GIT model. For « in vivo» estimation, use the carbon footprint of two mounts old broiler chicken. Assessments showed that «in vitro» carbon footprint constitutes about 15% of «in vivo» one. The most significant contributors to «in vitro» carbon footprint are nutrient medium (80%), then control computer (10%), then heather (5%). Recommendations for further carbon footprint reduction for «in vitro» experiments are formulated.
ISSN:2267-1242