Experimental analysis of wear and multi-shape burr loading during neurosurgical bone grinding

Amid bone grinding, a part of the hard tissue (i.e. bone) is usually removed to gain clearer operative excess to the tumours present beneath the bone. The tool wear and tool loading influence the thermal as well as mechanical conditions of surgery. The rise in temperature during osteotomy may cause...

Full description

Bibliographic Details
Main Authors: Atul Babbar, Vivek Jain, Dheeraj Gupta, Deepak Agrawal, Chander Prakash, Sunpreet Singh, Linda Yongling Wu, H.Y. Zheng, Grzegorz Królczyk, Marta Bogdan-Chudy
Format: Article
Language:English
Published: Elsevier 2021-05-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785421001861
Description
Summary:Amid bone grinding, a part of the hard tissue (i.e. bone) is usually removed to gain clearer operative excess to the tumours present beneath the bone. The tool wear and tool loading influence the thermal as well as mechanical conditions of surgery. The rise in temperature during osteotomy may cause severe consequence like thermogenesis and damage to optic nerves, cervical, and sciatic nerves. Therefore, the present study has been carried out to investigate the burr wear with different shaped grinding burrs. The burr wear is characterized in terms of burr loading, dislodging and fracture in abrasives. The burr loading is further quantified on the amount of bone adhered over the surface of the burr. The results of surface characterization revealed that minimum wear occurred in case of convex shape burr whereas cylindrical burr caused the highest wear in terms of abrasive fragmentation, dislodging, and wear flats. The minimum percentage of weight reduction observed with the convex burr i.e., 1.68% including 0.4196 g weight of dislodged abrasive (Wab) and corresponding burr loading is observed as 0.1464 g. The maximum burr loading was seen in the case of the spherical burr (Wb) i.e. 0.5907 g.
ISSN:2238-7854