Stability and Hopf Bifurcation in a Three-Component Planktonic Model with Spatial Diffusion and Time Delay

Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and numerically. This model describes the interactions b...

Full description

Bibliographic Details
Main Authors: Kejun Zhuang, Gao Jia, Dezhi Liu
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/4590915
Description
Summary:Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and numerically. This model describes the interactions between the zooplankton and two kinds of phytoplanktons. The long-time behavior of the model and existence of positive constant equilibrium solution are first discussed. Then, the stability of constant equilibrium solution and occurrence of Hopf bifurcation are detailed and analyzed by using the bifurcation theory. Moreover, the formulas for determining the bifurcation direction and stability of spatially bifurcating solutions are derived. Finally, some numerical simulations are performed to verify the appearance of the spatially homogeneous and nonhomogeneous periodic solutions.
ISSN:1076-2787
1099-0526