A Novel Learning Rate Schedule in Optimization for Neural Networks and It’s Convergence

The process of machine learning is to find parameters that minimize the cost function constructed by learning the data. This is called optimization and the parameters at that time are called the optimal parameters in neural networks. In the process of finding the optimization, there were attempts to...

Full description

Bibliographic Details
Main Authors: Jieun Park, Dokkyun Yi, Sangmin Ji
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/4/660
Description
Summary:The process of machine learning is to find parameters that minimize the cost function constructed by learning the data. This is called optimization and the parameters at that time are called the optimal parameters in neural networks. In the process of finding the optimization, there were attempts to solve the symmetric optimization or initialize the parameters symmetrically. Furthermore, in order to obtain the optimal parameters, the existing methods have used methods in which the learning rate is decreased over the iteration time or is changed according to a certain ratio. These methods are a monotonically decreasing method at a constant rate according to the iteration time. Our idea is to make the learning rate changeable unlike the monotonically decreasing method. We introduce a method to find the optimal parameters which adaptively changes the learning rate according to the value of the cost function. Therefore, when the cost function is optimized, the learning is complete and the optimal parameters are obtained. This paper proves that the method ensures convergence to the optimal parameters. This means that our method achieves a minimum of the cost function (or effective learning). Numerical experiments demonstrate that learning is good effective when using the proposed learning rate schedule in various situations.
ISSN:2073-8994