Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation

Autophagy, literally meaning ''self-eating,'' is a highly conserved process that is part of the eukaryotic cell cycle. Morphologically, the double membrane contains vesicles with phagocytic components known as autophagosomes. Autophagy is often used as a cellular stress response...

Full description

Bibliographic Details
Main Authors: Yujia Wang, Xiang Wen, Dan Hao, Muke Zhou, Xiaoxue Li, Gu He, Xian Jiang
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332218371348
Description
Summary:Autophagy, literally meaning ''self-eating,'' is a highly conserved process that is part of the eukaryotic cell cycle. Morphologically, the double membrane contains vesicles with phagocytic components known as autophagosomes. Autophagy is often used as a cellular stress response and quality control mechanisms are used to maintain cell survival. Survival is facilitated by providing energy and metabolic precursors as well as removing damaged proteins or organelles. Moreover, autophagy refers to organelles fused together with part of the cell cytoplasm with a double or multi-membrane structure called phagosome. Research has demonstrated that autophagy is an important mediator of cell fate and has effects on inflammation, pathogen clearance, and antigen presentation. In recent years, studies discussing autophagy have increased in number. Nevertheless, only a small amount of research has considered the impact of autophagy on the pathogenesis of skin diseases. The skin is the largest organ of the body, with a surface area of around two square metre; it is the first line of defense against numerous environmental insults, including ultraviolet radiation, pathogens, mechanical stresses, and toxic chemicals. Autophagy is thought to be a vital modality for endogenous defenses against environmental derangements. This review provides an overview of autophagy machinery in keratinocytes, skin fibroblasts, melanocytes related to skin diseases as well as strategies for therapeutic modulation, for the future development of treatment for skin diseases.
ISSN:0753-3322