Analysis of Source Influence on Guided Wave Excitation in Cylindrical Structures Using Spatial Fourier Transform Method

Guided wave transducers, such as electromagnetic acoustic transducers and piezoelectric transducers, generate multimode waves at a given excitation frequency in a cylindrical structure, making it difficult to detect flaws in such structures. To accurately identify the flaws, the transducers must be...

Full description

Bibliographic Details
Main Authors: Yunfei Li, Jiang Xu, Qinghua Li, Guang Chen
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2020/5267318
Description
Summary:Guided wave transducers, such as electromagnetic acoustic transducers and piezoelectric transducers, generate multimode waves at a given excitation frequency in a cylindrical structure, making it difficult to detect flaws in such structures. To accurately identify the flaws, the transducers must be well designed to suppress the nonaxisymmetric modes. Instead of using the normal mode expansion (NME) method, a spatial Fourier transform (SFT) method is proposed to analyze source influence on the guided wave excitation in a cylindrical structure. A two-dimensional SFT is performed on the spatial distribution function of the surface loading applied to the cylindrical structure. The spatial distribution function is represented in a cylindrical coordinate system. The circumferential-direction SFT is carried out from the angular coordinate to the circumferential orders of the guided wave modes. The axial-direction SFT is carried out from the axial coordinate to the wavenumbers of the guided wave modes. The results of the two-dimensional SFT represent guided wave excitation capabilities for different circumferential orders and wavenumbers. The specific surface loading conditions on the outer surface of a pipe are analyzed to predict source influence on the guided wave excitation. The results are consistent with those obtained using the NME method. Experiments corresponding to the specific surface loading conditions are carried out on a stainless steel pipe. The results confirm the effectiveness of the SFT method.
ISSN:1687-725X
1687-7268