A Hybrid Iterative Scheme for Variational Inequality Problems for Finite Families of Relatively Weak Quasi-Nonexpansive Mappings
We consider a hybrid projection algorithm basing on the shrinking projection method for two families of relatively weak quasi-nonexpansive mappings. We establish strong convergence theorems for approximating the common fixed point of the set of the common fixed points of such two families and the se...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://dx.doi.org/10.1155/2010/724851 |
Summary: | We consider a hybrid projection algorithm basing on the shrinking projection method for two families of relatively weak quasi-nonexpansive mappings. We establish strong convergence theorems for approximating the common fixed point of the set of the common fixed points of such two families and the set of solutions of the variational inequality for an inverse-strongly monotone operator in the framework of Banach spaces. At the end of the paper, we apply our results to consider the problem of finding a solution of the complementarity problem. Our results improve and extend the corresponding results announced by recent results. |
---|---|
ISSN: | 1025-5834 1029-242X |