An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
Abstract We analyze the positive solutions to {−Δv=λv(1−v);Ω0,∂v∂η+γλv=0;∂Ω0, $$ \textstyle\begin{cases} - \Delta v = \lambda v(1-v); & \Omega_{0}, \\ \frac{\partial v}{\partial\eta} + \gamma\sqrt{\lambda} v =0 ; & \partial\Omega_{0}, \end{cases} $$ where Ω0=(0,1) $\Omega_{0}=(0,1)$ or is a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-11-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-018-1090-z |
id |
doaj-1a3dca3147b44d1b8432739b582e040d |
---|---|
record_format |
Article |
spelling |
doaj-1a3dca3147b44d1b8432739b582e040d2020-11-25T02:17:19ZengSpringerOpenBoundary Value Problems1687-27702018-11-012018111710.1186/s13661-018-1090-zAn exact bifurcation diagram for a reaction–diffusion equation arising in population dynamicsJerome Goddard II0Quinn A. Morris1Stephen B. Robinson2Ratnasingham Shivaji3Department of Mathematics & Computer Science, Auburn University MontgomeryDepartment of Mathematics & Statistics, Swarthmore CollegeDepartment of Mathematics & Statistics, Wake Forest UniversityDepartment of Mathematics & Statistics, University of North Carolina GreensboroAbstract We analyze the positive solutions to {−Δv=λv(1−v);Ω0,∂v∂η+γλv=0;∂Ω0, $$ \textstyle\begin{cases} - \Delta v = \lambda v(1-v); & \Omega_{0}, \\ \frac{\partial v}{\partial\eta} + \gamma\sqrt{\lambda} v =0 ; & \partial\Omega_{0}, \end{cases} $$ where Ω0=(0,1) $\Omega_{0}=(0,1)$ or is a bounded domain in Rn $\mathbb{R}^{n}$, n=2,3 $n =2,3$, with smooth boundary and |Ω0|=1 $|\Omega_{0}|=1$, and λ, γ are positive parameters. Such steady state equations arise in population dynamics encapsulating assumptions regarding the patch/matrix interfaces such as patch preference and movement behavior. In this paper, we will discuss the exact bifurcation diagram and stability properties for such a steady state model.http://link.springer.com/article/10.1186/s13661-018-1090-zMathematical biologyReaction–diffusion modelBifurcationStability |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jerome Goddard II Quinn A. Morris Stephen B. Robinson Ratnasingham Shivaji |
spellingShingle |
Jerome Goddard II Quinn A. Morris Stephen B. Robinson Ratnasingham Shivaji An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics Boundary Value Problems Mathematical biology Reaction–diffusion model Bifurcation Stability |
author_facet |
Jerome Goddard II Quinn A. Morris Stephen B. Robinson Ratnasingham Shivaji |
author_sort |
Jerome Goddard II |
title |
An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics |
title_short |
An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics |
title_full |
An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics |
title_fullStr |
An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics |
title_full_unstemmed |
An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics |
title_sort |
exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2018-11-01 |
description |
Abstract We analyze the positive solutions to {−Δv=λv(1−v);Ω0,∂v∂η+γλv=0;∂Ω0, $$ \textstyle\begin{cases} - \Delta v = \lambda v(1-v); & \Omega_{0}, \\ \frac{\partial v}{\partial\eta} + \gamma\sqrt{\lambda} v =0 ; & \partial\Omega_{0}, \end{cases} $$ where Ω0=(0,1) $\Omega_{0}=(0,1)$ or is a bounded domain in Rn $\mathbb{R}^{n}$, n=2,3 $n =2,3$, with smooth boundary and |Ω0|=1 $|\Omega_{0}|=1$, and λ, γ are positive parameters. Such steady state equations arise in population dynamics encapsulating assumptions regarding the patch/matrix interfaces such as patch preference and movement behavior. In this paper, we will discuss the exact bifurcation diagram and stability properties for such a steady state model. |
topic |
Mathematical biology Reaction–diffusion model Bifurcation Stability |
url |
http://link.springer.com/article/10.1186/s13661-018-1090-z |
work_keys_str_mv |
AT jeromegoddardii anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT quinnamorris anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT stephenbrobinson anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT ratnasinghamshivaji anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT jeromegoddardii exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT quinnamorris exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT stephenbrobinson exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics AT ratnasinghamshivaji exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics |
_version_ |
1724887069354885120 |