An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics

Abstract We analyze the positive solutions to {−Δv=λv(1−v);Ω0,∂v∂η+γλv=0;∂Ω0, $$ \textstyle\begin{cases} - \Delta v = \lambda v(1-v); & \Omega_{0}, \\ \frac{\partial v}{\partial\eta} + \gamma\sqrt{\lambda} v =0 ; & \partial\Omega_{0}, \end{cases} $$ where Ω0=(0,1) $\Omega_{0}=(0,1)$ or is a...

Full description

Bibliographic Details
Main Authors: Jerome Goddard II, Quinn A. Morris, Stephen B. Robinson, Ratnasingham Shivaji
Format: Article
Language:English
Published: SpringerOpen 2018-11-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-1090-z
id doaj-1a3dca3147b44d1b8432739b582e040d
record_format Article
spelling doaj-1a3dca3147b44d1b8432739b582e040d2020-11-25T02:17:19ZengSpringerOpenBoundary Value Problems1687-27702018-11-012018111710.1186/s13661-018-1090-zAn exact bifurcation diagram for a reaction–diffusion equation arising in population dynamicsJerome Goddard II0Quinn A. Morris1Stephen B. Robinson2Ratnasingham Shivaji3Department of Mathematics & Computer Science, Auburn University MontgomeryDepartment of Mathematics & Statistics, Swarthmore CollegeDepartment of Mathematics & Statistics, Wake Forest UniversityDepartment of Mathematics & Statistics, University of North Carolina GreensboroAbstract We analyze the positive solutions to {−Δv=λv(1−v);Ω0,∂v∂η+γλv=0;∂Ω0, $$ \textstyle\begin{cases} - \Delta v = \lambda v(1-v); & \Omega_{0}, \\ \frac{\partial v}{\partial\eta} + \gamma\sqrt{\lambda} v =0 ; & \partial\Omega_{0}, \end{cases} $$ where Ω0=(0,1) $\Omega_{0}=(0,1)$ or is a bounded domain in Rn $\mathbb{R}^{n}$, n=2,3 $n =2,3$, with smooth boundary and |Ω0|=1 $|\Omega_{0}|=1$, and λ, γ are positive parameters. Such steady state equations arise in population dynamics encapsulating assumptions regarding the patch/matrix interfaces such as patch preference and movement behavior. In this paper, we will discuss the exact bifurcation diagram and stability properties for such a steady state model.http://link.springer.com/article/10.1186/s13661-018-1090-zMathematical biologyReaction–diffusion modelBifurcationStability
collection DOAJ
language English
format Article
sources DOAJ
author Jerome Goddard II
Quinn A. Morris
Stephen B. Robinson
Ratnasingham Shivaji
spellingShingle Jerome Goddard II
Quinn A. Morris
Stephen B. Robinson
Ratnasingham Shivaji
An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
Boundary Value Problems
Mathematical biology
Reaction–diffusion model
Bifurcation
Stability
author_facet Jerome Goddard II
Quinn A. Morris
Stephen B. Robinson
Ratnasingham Shivaji
author_sort Jerome Goddard II
title An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
title_short An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
title_full An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
title_fullStr An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
title_full_unstemmed An exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
title_sort exact bifurcation diagram for a reaction–diffusion equation arising in population dynamics
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2018-11-01
description Abstract We analyze the positive solutions to {−Δv=λv(1−v);Ω0,∂v∂η+γλv=0;∂Ω0, $$ \textstyle\begin{cases} - \Delta v = \lambda v(1-v); & \Omega_{0}, \\ \frac{\partial v}{\partial\eta} + \gamma\sqrt{\lambda} v =0 ; & \partial\Omega_{0}, \end{cases} $$ where Ω0=(0,1) $\Omega_{0}=(0,1)$ or is a bounded domain in Rn $\mathbb{R}^{n}$, n=2,3 $n =2,3$, with smooth boundary and |Ω0|=1 $|\Omega_{0}|=1$, and λ, γ are positive parameters. Such steady state equations arise in population dynamics encapsulating assumptions regarding the patch/matrix interfaces such as patch preference and movement behavior. In this paper, we will discuss the exact bifurcation diagram and stability properties for such a steady state model.
topic Mathematical biology
Reaction–diffusion model
Bifurcation
Stability
url http://link.springer.com/article/10.1186/s13661-018-1090-z
work_keys_str_mv AT jeromegoddardii anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT quinnamorris anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT stephenbrobinson anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT ratnasinghamshivaji anexactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT jeromegoddardii exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT quinnamorris exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT stephenbrobinson exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
AT ratnasinghamshivaji exactbifurcationdiagramforareactiondiffusionequationarisinginpopulationdynamics
_version_ 1724887069354885120