Symbol Error Probability of DF Relay Selection over Arbitrary Nakagami-m Fading Channels
We present a new analytical expression for the moment generating function (MGF) of the end-to-end signal-to-noise ratio of dual-hop decode-and-forward (DF) relaying systems with relay selection when operating over Nakagami-m fading channels. The derived MGF expression, which is valid for arbitrary v...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/325045 |
Summary: | We present a new analytical expression for the moment generating function (MGF) of the end-to-end signal-to-noise ratio of dual-hop decode-and-forward (DF) relaying systems with relay selection when operating over Nakagami-m fading channels. The derived MGF expression, which is valid for arbitrary values of the fading parameters of both hops, is subsequently utilized to evaluate the average symbol error probability (ASEP) of M-ary phase shift keying modulation for the considered DF relaying scheme under various asymmetric fading conditions. It is shown that the MGF-based ASEP performance evaluation results are in excellent agreement with equivalent ones obtained by means of computer simulations, thus validating the correctness of the presented MGF expression. |
---|---|
ISSN: | 2314-4904 2314-4912 |