Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

<p>Abstract</p> <p>Background</p> <p>The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. Howe...

Full description

Bibliographic Details
Main Authors: Aragon Robert J, Moretz Jeremy M, Chen Shin-Tai, Baldwin Melissa L, Baldwin Scott W, Reeves Mark E, Li Xinmin, Strong Donna D, Mohan Subburaman, Amaar Yousef G
Format: Article
Language:English
Published: BMC 2010-10-01
Series:BMC Cancer
Online Access:http://www.biomedcentral.com/1471-2407/10/562
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells.</p> <p>Methods</p> <p>Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed.</p> <p>Results</p> <p>In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration <it>in vitro</it>.</p> <p>Conclusion</p> <p>Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.</p>
ISSN:1471-2407