Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties

New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets...

Full description

Bibliographic Details
Main Authors: M.A. Alobaid, S.-J. Richards, M.R. Alexander, M.I. Gibson, A.M. Ghaemmaghami
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590006420300405
id doaj-1a216c64e7cb404486ff11afa5c950ea
record_format Article
spelling doaj-1a216c64e7cb404486ff11afa5c950ea2020-12-17T04:51:16ZengElsevierMaterials Today Bio2590-00642020-09-018100080Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive propertiesM.A. Alobaid0S.-J. Richards1M.R. Alexander2M.I. Gibson3A.M. Ghaemmaghami4Immunology & Immuno-Bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United KingdomDepartment of Chemistry, University of Warwick, Coventry, CV4 7AL, United KingdomSchool of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United KingdomDepartment of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United KingdomImmunology & Immuno-Bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom; Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA; Corresponding author.New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets for immune modulation. Carbohydrates are abundant in different biological systems and are known to modulate DC phenotype and function. However, how simple monosaccharides instruct DC function is less well understood. In this study, we used a combinatorial array of immobilized monosaccharides to investigate how they modulate DC phenotype and function and crucially the impact of such changes on downstream adaptive immune responses. Our data show that a selection of monosaccharides significantly suppress lipopolysaccharide-induced DC activation as evidenced by a reduction in CD40 expression, IL-12 production, and indoleamine 2,3-dioxygenase activity, while inducing a significant increase in IL-10 production. These changes are indicative of the induction of an anti-inflammatory or regulatory phenotype in DCs, which was further confirmed in DC–T cell co-cultures where DCs cultured on the ‘regulatory’ monosaccharide-coated surfaces were shown to induce naïve T cell polarization toward regulatory phenotype. Our data also highlighted a selection of monosaccharides that are able to promote mixed Treg and Th17 cell differentiation, a T cell phenotype expected to be highly immune suppressive. These data show the potential immunomodulatory effects of immobilized monosaccharides in priming DCs and skewing T cell differentiation toward an immune-regulatory phenotype. The ability to fine-tune immune responses using these simple carbohydrate combinations (e.g. as coatings for existing materials) can be utilized as novel tools for immune modulation with potential applications in regenerative medicine, implantable medical devices, and wound healing where reduction of inflammatory responses and maintaining immune homeostasis are desirable.http://www.sciencedirect.com/science/article/pii/S2590006420300405Dendritic cellsT cellsCarbohydratesImmune-instructive materialsImmune modulationFucose
collection DOAJ
language English
format Article
sources DOAJ
author M.A. Alobaid
S.-J. Richards
M.R. Alexander
M.I. Gibson
A.M. Ghaemmaghami
spellingShingle M.A. Alobaid
S.-J. Richards
M.R. Alexander
M.I. Gibson
A.M. Ghaemmaghami
Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
Materials Today Bio
Dendritic cells
T cells
Carbohydrates
Immune-instructive materials
Immune modulation
Fucose
author_facet M.A. Alobaid
S.-J. Richards
M.R. Alexander
M.I. Gibson
A.M. Ghaemmaghami
author_sort M.A. Alobaid
title Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
title_short Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
title_full Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
title_fullStr Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
title_full_unstemmed Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
title_sort developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties
publisher Elsevier
series Materials Today Bio
issn 2590-0064
publishDate 2020-09-01
description New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets for immune modulation. Carbohydrates are abundant in different biological systems and are known to modulate DC phenotype and function. However, how simple monosaccharides instruct DC function is less well understood. In this study, we used a combinatorial array of immobilized monosaccharides to investigate how they modulate DC phenotype and function and crucially the impact of such changes on downstream adaptive immune responses. Our data show that a selection of monosaccharides significantly suppress lipopolysaccharide-induced DC activation as evidenced by a reduction in CD40 expression, IL-12 production, and indoleamine 2,3-dioxygenase activity, while inducing a significant increase in IL-10 production. These changes are indicative of the induction of an anti-inflammatory or regulatory phenotype in DCs, which was further confirmed in DC–T cell co-cultures where DCs cultured on the ‘regulatory’ monosaccharide-coated surfaces were shown to induce naïve T cell polarization toward regulatory phenotype. Our data also highlighted a selection of monosaccharides that are able to promote mixed Treg and Th17 cell differentiation, a T cell phenotype expected to be highly immune suppressive. These data show the potential immunomodulatory effects of immobilized monosaccharides in priming DCs and skewing T cell differentiation toward an immune-regulatory phenotype. The ability to fine-tune immune responses using these simple carbohydrate combinations (e.g. as coatings for existing materials) can be utilized as novel tools for immune modulation with potential applications in regenerative medicine, implantable medical devices, and wound healing where reduction of inflammatory responses and maintaining immune homeostasis are desirable.
topic Dendritic cells
T cells
Carbohydrates
Immune-instructive materials
Immune modulation
Fucose
url http://www.sciencedirect.com/science/article/pii/S2590006420300405
work_keys_str_mv AT maalobaid developingimmuneregulatorymaterialsusingimmobilizedmonosaccharideswithimmuneinstructiveproperties
AT sjrichards developingimmuneregulatorymaterialsusingimmobilizedmonosaccharideswithimmuneinstructiveproperties
AT mralexander developingimmuneregulatorymaterialsusingimmobilizedmonosaccharideswithimmuneinstructiveproperties
AT migibson developingimmuneregulatorymaterialsusingimmobilizedmonosaccharideswithimmuneinstructiveproperties
AT amghaemmaghami developingimmuneregulatorymaterialsusingimmobilizedmonosaccharideswithimmuneinstructiveproperties
_version_ 1724380151686365184