Multiscale Characterization of Isotropic Pyrolytic Carbon Used for Mechanical Heart Valve Production

Usage of pyrolytic carbon (PyC) to produce mechanical heart valves (MHVs) has led to heart valve replacement being a very successful procedure. Thus, the mechanical properties of employed materials for MHV production are fundamental to obtain the required characteristics of biocompatibility and wear...

Full description

Bibliographic Details
Main Authors: Gianpaolo Serino, Mattia Gusmini, Alberto Luigi Audenino, Giovanni Bergamasco, Ornella Ieropoli, Cristina Bignardi
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/2/338
Description
Summary:Usage of pyrolytic carbon (PyC) to produce mechanical heart valves (MHVs) has led to heart valve replacement being a very successful procedure. Thus, the mechanical properties of employed materials for MHV production are fundamental to obtain the required characteristics of biocompatibility and wear resistance. In this study, two deposition methods of PyC were compared through a multiscale approach, performing three-point bending tests and nanoindentation tests. Adopted deposition processes produced materials that were slightly different. Significant differences were found at the characteristic scale lengths of the deposited layers. Setting changes of the deposition process permitted obtaining PyC characterized by a more uniform microstructure, conferring to the bulk material superior mechanical properties.
ISSN:2227-9717