Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window

<p>We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Sou...

Full description

Bibliographic Details
Main Authors: G. Chen, Y. Sosedova, F. Canonaco, R. Fröhlich, A. Tobler, A. Vlachou, K. R. Daellenbach, C. Bozzetti, C. Hueglin, P. Graf, U. Baltensperger, J. G. Slowik, I. El Haddad, A. S. H. Prévôt
Format: Article
Language:English
Published: Copernicus Publications 2021-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/15081/2021/acp-21-15081-2021.pdf
id doaj-19fc4354de5e462185913a1ece82699a
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author G. Chen
Y. Sosedova
Y. Sosedova
F. Canonaco
F. Canonaco
R. Fröhlich
A. Tobler
A. Tobler
A. Vlachou
K. R. Daellenbach
C. Bozzetti
C. Hueglin
P. Graf
U. Baltensperger
J. G. Slowik
I. El Haddad
A. S. H. Prévôt
spellingShingle G. Chen
Y. Sosedova
Y. Sosedova
F. Canonaco
F. Canonaco
R. Fröhlich
A. Tobler
A. Tobler
A. Vlachou
K. R. Daellenbach
C. Bozzetti
C. Hueglin
P. Graf
U. Baltensperger
J. G. Slowik
I. El Haddad
A. S. H. Prévôt
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
Atmospheric Chemistry and Physics
author_facet G. Chen
Y. Sosedova
Y. Sosedova
F. Canonaco
F. Canonaco
R. Fröhlich
A. Tobler
A. Tobler
A. Vlachou
K. R. Daellenbach
C. Bozzetti
C. Hueglin
P. Graf
U. Baltensperger
J. G. Slowik
I. El Haddad
A. S. H. Prévôt
author_sort G. Chen
title Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
title_short Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
title_full Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
title_fullStr Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
title_full_unstemmed Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
title_sort time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (pmf) window
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-10-01
description <p>We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed a rolling algorithm, which is closer to the measurement, to account for the temporal changes in the source profiles. As the first-ever application of rolling PMF with multilinear engine (ME-2) analysis on a yearlong dataset that was collected from a rural site, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00001.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00001.png"/></svg:svg></span></span>) 58-related OA (58-OA) factor, a less oxidised oxygenated OA (LO-OOA) factor, and a more oxidised oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1 % to 10.1 %, while the contribution of BBOA showed an apparent seasonal variation with a range of 8.3 %–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. OOA (sum of LO-OOA and MO-OOA) contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The 58-OA factor mainly contained nitrogen-related variables which appeared to be pronounced only after the filament switched. However, since the contribution of this factor was insignificant (2.1 %), we did not attempt to interpolate its potential source in this work. The uncertainties (<span class="inline-formula"><i>σ</i></span>) for the modelled OA factors (i.e. rotational uncertainty and statistical variability in the sources) varied from <span class="inline-formula">±</span>4 % (58-OA) to a maximum of <span class="inline-formula">±</span>40 % (LO-OOA). Considering that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest reducing and controlling biomass-burning-related residential heating as a mitigation strategy for better air quality and lower PM levels in this region or similar locations. In Appendix A, we conduct a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. We find similar or slightly improved results in terms of mass concentrations, correlations with external tracers, and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts compared to those of the seasonal solutions, which was most likely because the rolling PMF analysis can capture the temporal variations in the oxidation processes for OOA components. Specifically, the time-dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00002.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00002.png"/></svg:svg></span></span> 44 (CO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="dc8b1598d8557bb9492c8cdf197bf640"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00003.svg" width="8pt" height="15pt" src="acp-21-15081-2021-ie00003.png"/></svg:svg></span></span>) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00004.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00004.png"/></svg:svg></span></span> 43 (mostly C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sup>+</sup></span>). Therefore, this rolling PMF analysis provides a more realistic source apportionment (SA) solution with time-dependent OA sources. The rolling results also show good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples,<span id="page15082"/> except for in winter. The latter discrepancy is likely because the online measurement can capture the fast oxidation processes of biomass burning sources, in contrast to the 24 h filter samples. This study demonstrates the strengths of the rolling mechanism, provides a comprehensive criterion list for ACSM users to obtain reproducible SA results, and is a role model for similar analyses of such worldwide available data.</p>
url https://acp.copernicus.org/articles/21/15081/2021/acp-21-15081-2021.pdf
work_keys_str_mv AT gchen timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT ysosedova timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT ysosedova timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT fcanonaco timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT fcanonaco timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT rfrohlich timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT atobler timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT atobler timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT avlachou timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT krdaellenbach timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT cbozzetti timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT chueglin timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT pgraf timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT ubaltensperger timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT jgslowik timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT ielhaddad timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
AT ashprevot timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow
_version_ 1716828242462113792
spelling doaj-19fc4354de5e462185913a1ece82699a2021-10-11T07:36:05ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-10-0121150811510110.5194/acp-21-15081-2021Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) windowG. Chen0Y. Sosedova1Y. Sosedova2F. Canonaco3F. Canonaco4R. Fröhlich5A. Tobler6A. Tobler7A. Vlachou8K. R. Daellenbach9C. Bozzetti10C. Hueglin11P. Graf12U. Baltensperger13J. G. Slowik14I. El Haddad15A. S. H. Prévôt16Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, SwitzerlandLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland<p>We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed a rolling algorithm, which is closer to the measurement, to account for the temporal changes in the source profiles. As the first-ever application of rolling PMF with multilinear engine (ME-2) analysis on a yearlong dataset that was collected from a rural site, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00001.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00001.png"/></svg:svg></span></span>) 58-related OA (58-OA) factor, a less oxidised oxygenated OA (LO-OOA) factor, and a more oxidised oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1 % to 10.1 %, while the contribution of BBOA showed an apparent seasonal variation with a range of 8.3 %–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. OOA (sum of LO-OOA and MO-OOA) contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The 58-OA factor mainly contained nitrogen-related variables which appeared to be pronounced only after the filament switched. However, since the contribution of this factor was insignificant (2.1 %), we did not attempt to interpolate its potential source in this work. The uncertainties (<span class="inline-formula"><i>σ</i></span>) for the modelled OA factors (i.e. rotational uncertainty and statistical variability in the sources) varied from <span class="inline-formula">±</span>4 % (58-OA) to a maximum of <span class="inline-formula">±</span>40 % (LO-OOA). Considering that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest reducing and controlling biomass-burning-related residential heating as a mitigation strategy for better air quality and lower PM levels in this region or similar locations. In Appendix A, we conduct a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. We find similar or slightly improved results in terms of mass concentrations, correlations with external tracers, and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts compared to those of the seasonal solutions, which was most likely because the rolling PMF analysis can capture the temporal variations in the oxidation processes for OOA components. Specifically, the time-dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00002.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00002.png"/></svg:svg></span></span> 44 (CO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="dc8b1598d8557bb9492c8cdf197bf640"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00003.svg" width="8pt" height="15pt" src="acp-21-15081-2021-ie00003.png"/></svg:svg></span></span>) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00004.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00004.png"/></svg:svg></span></span> 43 (mostly C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sup>+</sup></span>). Therefore, this rolling PMF analysis provides a more realistic source apportionment (SA) solution with time-dependent OA sources. The rolling results also show good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples,<span id="page15082"/> except for in winter. The latter discrepancy is likely because the online measurement can capture the fast oxidation processes of biomass burning sources, in contrast to the 24 h filter samples. This study demonstrates the strengths of the rolling mechanism, provides a comprehensive criterion list for ACSM users to obtain reproducible SA results, and is a role model for similar analyses of such worldwide available data.</p>https://acp.copernicus.org/articles/21/15081/2021/acp-21-15081-2021.pdf