Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
<p>We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Sou...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-10-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/21/15081/2021/acp-21-15081-2021.pdf |
id |
doaj-19fc4354de5e462185913a1ece82699a |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. Chen Y. Sosedova Y. Sosedova F. Canonaco F. Canonaco R. Fröhlich A. Tobler A. Tobler A. Vlachou K. R. Daellenbach C. Bozzetti C. Hueglin P. Graf U. Baltensperger J. G. Slowik I. El Haddad A. S. H. Prévôt |
spellingShingle |
G. Chen Y. Sosedova Y. Sosedova F. Canonaco F. Canonaco R. Fröhlich A. Tobler A. Tobler A. Vlachou K. R. Daellenbach C. Bozzetti C. Hueglin P. Graf U. Baltensperger J. G. Slowik I. El Haddad A. S. H. Prévôt Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window Atmospheric Chemistry and Physics |
author_facet |
G. Chen Y. Sosedova Y. Sosedova F. Canonaco F. Canonaco R. Fröhlich A. Tobler A. Tobler A. Vlachou K. R. Daellenbach C. Bozzetti C. Hueglin P. Graf U. Baltensperger J. G. Slowik I. El Haddad A. S. H. Prévôt |
author_sort |
G. Chen |
title |
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window |
title_short |
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window |
title_full |
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window |
title_fullStr |
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window |
title_full_unstemmed |
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window |
title_sort |
time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (pmf) window |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2021-10-01 |
description |
<p>We collected 1 year of aerosol chemical speciation monitor (ACSM) data in
Magadino, a village located in the south of the Swiss Alpine region, one of
Switzerland's most polluted areas. We analysed the mass spectra of organic
aerosol (OA) by positive matrix factorisation (PMF) using Source Finder
Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed
a rolling algorithm, which is closer to the measurement, to account for the temporal changes in the source
profiles. As the first-ever application
of rolling PMF with multilinear engine (ME-2) analysis on a yearlong dataset that was collected
from a rural site, we resolved two primary OA factors (traffic-related
hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one mass-to-charge
ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00001.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00001.png"/></svg:svg></span></span>) 58-related OA (58-OA) factor, a less oxidised oxygenated OA
(LO-OOA) factor, and a more oxidised oxygenated OA (MO-OOA) factor. HOA
showed stable contributions to the total OA through the whole year ranging
from 8.1 % to 10.1 %, while the contribution of BBOA showed an apparent
seasonal variation with a range of 8.3 %–27.4 % (highest during winter,
lowest during summer) and a yearly average of 17.1 %. OOA (sum of LO-OOA
and MO-OOA) contributed 71.6 % of the OA mass, varying from 62.5 % (in
winter) to 78 % (in spring and summer). The 58-OA factor mainly contained
nitrogen-related variables which appeared to be pronounced only after
the filament switched. However, since the contribution of this factor was
insignificant (2.1 %), we did not attempt to interpolate its potential
source in this work. The uncertainties (<span class="inline-formula"><i>σ</i></span>) for the modelled OA
factors (i.e. rotational uncertainty and statistical variability in the
sources) varied from <span class="inline-formula">±</span>4 % (58-OA) to a maximum of <span class="inline-formula">±</span>40 %
(LO-OOA). Considering that BBOA and LO-OOA (showing influences of biomass
burning in winter) had significant contributions to the total OA mass, we
suggest reducing and controlling biomass-burning-related residential heating as a mitigation
strategy for better air quality and lower PM levels in this region or
similar locations. In Appendix A, we conduct a head-to-head comparison
between the conventional seasonal PMF analysis and the rolling mechanism. We
find similar or slightly improved results in terms of mass concentrations,
correlations with external tracers, and factor profiles of the constrained
POA factors. The rolling results show smaller scaled residuals and enhanced
correlations between OOA factors and corresponding inorganic salts compared to
those of the seasonal solutions, which was most likely because the rolling
PMF analysis can capture the temporal variations in the oxidation processes
for OOA components. Specifically, the time-dependent factor profiles of
MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions
for OOA factors, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00002.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00002.png"/></svg:svg></span></span> 44 (CO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="dc8b1598d8557bb9492c8cdf197bf640"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00003.svg" width="8pt" height="15pt" src="acp-21-15081-2021-ie00003.png"/></svg:svg></span></span>) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00004.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00004.png"/></svg:svg></span></span> 43 (mostly
C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sup>+</sup></span>). Therefore, this rolling PMF analysis provides a more
realistic source apportionment (SA) solution with time-dependent OA sources.
The rolling results also show good agreement with offline Aerodyne aerosol
mass spectrometer (AMS) SA results from filter samples,<span id="page15082"/> except for in winter.
The latter discrepancy is likely because the online measurement can capture
the fast oxidation processes of biomass burning sources, in contrast to the
24 h filter samples. This study demonstrates the strengths of the rolling
mechanism, provides a comprehensive criterion list for ACSM users to
obtain reproducible SA results, and is a role model for similar analyses of
such worldwide available data.</p> |
url |
https://acp.copernicus.org/articles/21/15081/2021/acp-21-15081-2021.pdf |
work_keys_str_mv |
AT gchen timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT ysosedova timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT ysosedova timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT fcanonaco timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT fcanonaco timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT rfrohlich timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT atobler timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT atobler timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT avlachou timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT krdaellenbach timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT cbozzetti timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT chueglin timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT pgraf timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT ubaltensperger timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT jgslowik timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT ielhaddad timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow AT ashprevot timedependentsourceapportionmentofsubmicronorganicaerosolforaruralsiteinanalpinevalleyusingarollingpositivematrixfactorisationpmfwindow |
_version_ |
1716828242462113792 |
spelling |
doaj-19fc4354de5e462185913a1ece82699a2021-10-11T07:36:05ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-10-0121150811510110.5194/acp-21-15081-2021Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) windowG. Chen0Y. Sosedova1Y. Sosedova2F. Canonaco3F. Canonaco4R. Fröhlich5A. Tobler6A. Tobler7A. Vlachou8K. R. Daellenbach9C. Bozzetti10C. Hueglin11P. Graf12U. Baltensperger13J. G. Slowik14I. El Haddad15A. S. H. Prévôt16Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDatalystica Ltd., Park Innovaare, 5234 Villigen, SwitzerlandLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, SwitzerlandLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandLaboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland<p>We collected 1 year of aerosol chemical speciation monitor (ACSM) data in Magadino, a village located in the south of the Swiss Alpine region, one of Switzerland's most polluted areas. We analysed the mass spectra of organic aerosol (OA) by positive matrix factorisation (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. Therein, we deployed a rolling algorithm, which is closer to the measurement, to account for the temporal changes in the source profiles. As the first-ever application of rolling PMF with multilinear engine (ME-2) analysis on a yearlong dataset that was collected from a rural site, we resolved two primary OA factors (traffic-related hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)), one mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00001.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00001.png"/></svg:svg></span></span>) 58-related OA (58-OA) factor, a less oxidised oxygenated OA (LO-OOA) factor, and a more oxidised oxygenated OA (MO-OOA) factor. HOA showed stable contributions to the total OA through the whole year ranging from 8.1 % to 10.1 %, while the contribution of BBOA showed an apparent seasonal variation with a range of 8.3 %–27.4 % (highest during winter, lowest during summer) and a yearly average of 17.1 %. OOA (sum of LO-OOA and MO-OOA) contributed 71.6 % of the OA mass, varying from 62.5 % (in winter) to 78 % (in spring and summer). The 58-OA factor mainly contained nitrogen-related variables which appeared to be pronounced only after the filament switched. However, since the contribution of this factor was insignificant (2.1 %), we did not attempt to interpolate its potential source in this work. The uncertainties (<span class="inline-formula"><i>σ</i></span>) for the modelled OA factors (i.e. rotational uncertainty and statistical variability in the sources) varied from <span class="inline-formula">±</span>4 % (58-OA) to a maximum of <span class="inline-formula">±</span>40 % (LO-OOA). Considering that BBOA and LO-OOA (showing influences of biomass burning in winter) had significant contributions to the total OA mass, we suggest reducing and controlling biomass-burning-related residential heating as a mitigation strategy for better air quality and lower PM levels in this region or similar locations. In Appendix A, we conduct a head-to-head comparison between the conventional seasonal PMF analysis and the rolling mechanism. We find similar or slightly improved results in terms of mass concentrations, correlations with external tracers, and factor profiles of the constrained POA factors. The rolling results show smaller scaled residuals and enhanced correlations between OOA factors and corresponding inorganic salts compared to those of the seasonal solutions, which was most likely because the rolling PMF analysis can capture the temporal variations in the oxidation processes for OOA components. Specifically, the time-dependent factor profiles of MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA factors, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00002.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00002.png"/></svg:svg></span></span> 44 (CO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="dc8b1598d8557bb9492c8cdf197bf640"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00003.svg" width="8pt" height="15pt" src="acp-21-15081-2021-ie00003.png"/></svg:svg></span></span>) and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-15081-2021-ie00004.svg" width="23pt" height="14pt" src="acp-21-15081-2021-ie00004.png"/></svg:svg></span></span> 43 (mostly C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>3</sub></span>O<span class="inline-formula"><sup>+</sup></span>). Therefore, this rolling PMF analysis provides a more realistic source apportionment (SA) solution with time-dependent OA sources. The rolling results also show good agreement with offline Aerodyne aerosol mass spectrometer (AMS) SA results from filter samples,<span id="page15082"/> except for in winter. The latter discrepancy is likely because the online measurement can capture the fast oxidation processes of biomass burning sources, in contrast to the 24 h filter samples. This study demonstrates the strengths of the rolling mechanism, provides a comprehensive criterion list for ACSM users to obtain reproducible SA results, and is a role model for similar analyses of such worldwide available data.</p>https://acp.copernicus.org/articles/21/15081/2021/acp-21-15081-2021.pdf |