Interfacial Effects on the Band Edges of Ta3N5 Photoanodes in an Aqueous Environment: A Theoretical View

Summary: Ta3N5, as a fascinating photoanode for solar hydrogen production, is expected to split water without any bias, because its band edge potentials straddle H2O redox potentials. Unfortunately, Ta3N5 photoanodes can split water only when a bias of at least 0.6–0.9 V is applied. It means that th...

Full description

Bibliographic Details
Main Authors: Guozheng Fan, Tao Fang, Xin Wang, Yaodong Zhu, Hongwei Fu, Jianyong Feng, Zhaosheng Li, Zhigang Zou
Format: Article
Language:English
Published: Elsevier 2019-03-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004219300586
Description
Summary:Summary: Ta3N5, as a fascinating photoanode for solar hydrogen production, is expected to split water without any bias, because its band edge potentials straddle H2O redox potentials. Unfortunately, Ta3N5 photoanodes can split water only when a bias of at least 0.6–0.9 V is applied. It means that they exhibit an onset potential as high as 0.6–0.9 VRHE (reversible hydrogen electrode). In this study, density functional theory calculations show that the band edge potentials of Ta3N5 have a shift of approximately −0.42 eV relative to vacuum level when exposed to water. The increased ratio of dissociated water at Ta3N5-water interface will further make the band edge potentials shift −0.85 eV relative to vacuum level, implying the anodic shifts of the onset potential for water oxidation. The findings may reveal the mystery of the unexpectedly high onset potential of Ta3N5, as high as 0.6–0.9 VRHE. : Catalysis; Electrochemical Energy Conversion; Energy Materials Subject Areas: Catalysis, Electrochemical Energy Conversion, Energy Materials
ISSN:2589-0042