Anomalous dimensions of potential top-partners

We discuss anomalous dimensions of top-partner candidates in theories of Partial Compositeness. First, we revisit, confirm and extend the computation by DeGrand and Shamir of anomalous dimensions of fermionic trilinears. We present general results applicable to all matter representations and to c...

Full description

Bibliographic Details
Main Author: Diogo Buarque Franzosi, Gabriele Ferretti
Format: Article
Language:English
Published: SciPost 2019-09-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.7.3.027
Description
Summary:We discuss anomalous dimensions of top-partner candidates in theories of Partial Compositeness. First, we revisit, confirm and extend the computation by DeGrand and Shamir of anomalous dimensions of fermionic trilinears. We present general results applicable to all matter representations and to composite operators of any allowed spin. We then ask the question of whether it is reasonable to expect some models to have composite operators of sufficiently large anomalous dimension to serve as top-partners. While this question can be answered conclusively only by lattice gauge theory, within perturbation theory we find that such values could well occur for some specific models. In the Appendix we collect a number of practical group theory results for fourth-order invariants of general interest in gauge theories with many irreducible representations of fermions.
ISSN:2542-4653