Robust Exponential Stability Criteria of LPD Systems with Mixed Time-Varying Delays and Nonlinear Perturbations
This paper investigates the problem of robust exponential stability for linear parameter-dependent (LPD) systems with discrete and distributed time-varying delays and nonlinear perturbations. Parameter dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, and linear matrix inequality are...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/348418 |
Summary: | This paper investigates the problem of robust exponential stability for linear parameter-dependent (LPD) systems with discrete and distributed time-varying delays and nonlinear perturbations. Parameter dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, and linear matrix inequality are proposed to analyze the stability. On the basis of the estimation and by utilizing free-weighting matrices, new delay-dependent exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods. |
---|---|
ISSN: | 1085-3375 1687-0409 |