Minimum area polyomino Venn diagrams
Polyomino Venn (or polyVenn) diagrams are Venn diagrams whose curves are the perimeters of orthogonal polyominoes drawn on the integer lattice. Minimum area polyVenn diagrams are those in which each of the 2<sup><em>n</em></sup> intersection regions, in a diagram of <em>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Carleton University
2012-09-01
|
Series: | Journal of Computational Geometry |
Online Access: | http://jocg.org/index.php/jocg/article/view/91 |
id |
doaj-198d891a33a242769fd483ad2ab52461 |
---|---|
record_format |
Article |
spelling |
doaj-198d891a33a242769fd483ad2ab524612020-11-24T22:45:33ZengCarleton UniversityJournal of Computational Geometry1920-180X2012-09-013110.20382/jocg.v3i1a829Minimum area polyomino Venn diagramsBette BultenaMatthew KlimeshFrank RuskeyPolyomino Venn (or polyVenn) diagrams are Venn diagrams whose curves are the perimeters of orthogonal polyominoes drawn on the integer lattice. Minimum area polyVenn diagrams are those in which each of the 2<sup><em>n</em></sup> intersection regions, in a diagram of <em>n</em> polyominoes, consists of exactly one unit square. We construct minimum area polyVenn diagrams in bounding rectangles of size 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> whenever <em>r</em>, <em>c</em> ≥ 2. Our construction is inductive, and depends on two <q>expansion</q>results. First, a minimum area polyVenn diagram in a 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup><em>r</em>+1</sup>×2<sup><em>c</em>+1</sup> rectangle. Second, a minimum area polyVenn in a 2<sup>2</sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup>2</sup>×2<sup><em>c</em>+3</sup> bounding rectangle. Finally, for even <em>n</em> we construct <em>n</em>-set polyVenn diagrams in bounding rectangles of size (2<sup><em>n</em>/2</sup>-1)×(2<sup><em>n</em>/2</sup>+1) in which the empty set is <em>not</em> represented as a unit square.http://jocg.org/index.php/jocg/article/view/91 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bette Bultena Matthew Klimesh Frank Ruskey |
spellingShingle |
Bette Bultena Matthew Klimesh Frank Ruskey Minimum area polyomino Venn diagrams Journal of Computational Geometry |
author_facet |
Bette Bultena Matthew Klimesh Frank Ruskey |
author_sort |
Bette Bultena |
title |
Minimum area polyomino Venn diagrams |
title_short |
Minimum area polyomino Venn diagrams |
title_full |
Minimum area polyomino Venn diagrams |
title_fullStr |
Minimum area polyomino Venn diagrams |
title_full_unstemmed |
Minimum area polyomino Venn diagrams |
title_sort |
minimum area polyomino venn diagrams |
publisher |
Carleton University |
series |
Journal of Computational Geometry |
issn |
1920-180X |
publishDate |
2012-09-01 |
description |
Polyomino Venn (or polyVenn) diagrams are Venn diagrams whose curves are the perimeters of orthogonal polyominoes drawn on the integer lattice. Minimum area polyVenn diagrams are those in which each of the 2<sup><em>n</em></sup> intersection regions, in a diagram of <em>n</em> polyominoes, consists of exactly one unit square. We construct minimum area polyVenn diagrams in bounding rectangles of size 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> whenever <em>r</em>, <em>c</em> ≥ 2. Our construction is inductive, and depends on two <q>expansion</q>results. First, a minimum area polyVenn diagram in a 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup><em>r</em>+1</sup>×2<sup><em>c</em>+1</sup> rectangle. Second, a minimum area polyVenn in a 2<sup>2</sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup>2</sup>×2<sup><em>c</em>+3</sup> bounding rectangle. Finally, for even <em>n</em> we construct <em>n</em>-set polyVenn diagrams in bounding rectangles of size (2<sup><em>n</em>/2</sup>-1)×(2<sup><em>n</em>/2</sup>+1) in which the empty set is <em>not</em> represented as a unit square. |
url |
http://jocg.org/index.php/jocg/article/view/91 |
work_keys_str_mv |
AT bettebultena minimumareapolyominovenndiagrams AT matthewklimesh minimumareapolyominovenndiagrams AT frankruskey minimumareapolyominovenndiagrams |
_version_ |
1725688021828763648 |