Minimum area polyomino Venn diagrams

Polyomino Venn (or polyVenn) diagrams are Venn diagrams whose curves are the perimeters of orthogonal polyominoes drawn on the integer lattice. Minimum area polyVenn diagrams are those in which each of the 2<sup><em>n</em></sup> intersection regions, in a diagram of <em>...

Full description

Bibliographic Details
Main Authors: Bette Bultena, Matthew Klimesh, Frank Ruskey
Format: Article
Language:English
Published: Carleton University 2012-09-01
Series:Journal of Computational Geometry
Online Access:http://jocg.org/index.php/jocg/article/view/91
id doaj-198d891a33a242769fd483ad2ab52461
record_format Article
spelling doaj-198d891a33a242769fd483ad2ab524612020-11-24T22:45:33ZengCarleton UniversityJournal of Computational Geometry1920-180X2012-09-013110.20382/jocg.v3i1a829Minimum area polyomino Venn diagramsBette BultenaMatthew KlimeshFrank RuskeyPolyomino Venn (or polyVenn) diagrams are Venn diagrams whose curves are the perimeters of orthogonal polyominoes drawn on the integer lattice. Minimum area polyVenn diagrams are those in which each of the 2<sup><em>n</em></sup> intersection regions, in a diagram of <em>n</em> polyominoes, consists of exactly one unit square. We construct minimum area polyVenn diagrams in bounding rectangles of size 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> whenever <em>r</em>, <em>c</em> ≥ 2. Our construction is inductive, and depends on two <q>expansion</q>results. First, a minimum area polyVenn diagram in a 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup><em>r</em>+1</sup>×2<sup><em>c</em>+1</sup> rectangle. Second, a minimum area polyVenn in a 2<sup>2</sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup>2</sup>×2<sup><em>c</em>+3</sup> bounding rectangle. Finally, for even <em>n</em> we construct <em>n</em>-set polyVenn diagrams in bounding rectangles of size (2<sup><em>n</em>/2</sup>-1)×(2<sup><em>n</em>/2</sup>+1) in which the empty set is <em>not</em> represented as a unit square.http://jocg.org/index.php/jocg/article/view/91
collection DOAJ
language English
format Article
sources DOAJ
author Bette Bultena
Matthew Klimesh
Frank Ruskey
spellingShingle Bette Bultena
Matthew Klimesh
Frank Ruskey
Minimum area polyomino Venn diagrams
Journal of Computational Geometry
author_facet Bette Bultena
Matthew Klimesh
Frank Ruskey
author_sort Bette Bultena
title Minimum area polyomino Venn diagrams
title_short Minimum area polyomino Venn diagrams
title_full Minimum area polyomino Venn diagrams
title_fullStr Minimum area polyomino Venn diagrams
title_full_unstemmed Minimum area polyomino Venn diagrams
title_sort minimum area polyomino venn diagrams
publisher Carleton University
series Journal of Computational Geometry
issn 1920-180X
publishDate 2012-09-01
description Polyomino Venn (or polyVenn) diagrams are Venn diagrams whose curves are the perimeters of orthogonal polyominoes drawn on the integer lattice. Minimum area polyVenn diagrams are those in which each of the 2<sup><em>n</em></sup> intersection regions, in a diagram of <em>n</em> polyominoes, consists of exactly one unit square. We construct minimum area polyVenn diagrams in bounding rectangles of size 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> whenever <em>r</em>, <em>c</em> ≥ 2. Our construction is inductive, and depends on two <q>expansion</q>results. First, a minimum area polyVenn diagram in a 2<sup><em>r</em></sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup><em>r</em>+1</sup>×2<sup><em>c</em>+1</sup> rectangle. Second, a minimum area polyVenn in a 2<sup>2</sup>×2<sup><em>c</em></sup> rectangle can be expanded to produce another that fits into a 2<sup>2</sup>×2<sup><em>c</em>+3</sup> bounding rectangle. Finally, for even <em>n</em> we construct <em>n</em>-set polyVenn diagrams in bounding rectangles of size (2<sup><em>n</em>/2</sup>-1)×(2<sup><em>n</em>/2</sup>+1) in which the empty set is <em>not</em> represented as a unit square.
url http://jocg.org/index.php/jocg/article/view/91
work_keys_str_mv AT bettebultena minimumareapolyominovenndiagrams
AT matthewklimesh minimumareapolyominovenndiagrams
AT frankruskey minimumareapolyominovenndiagrams
_version_ 1725688021828763648