Saharan dust event impacts on cloud formation and radiation over Western Europe

We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophi...

Full description

Bibliographic Details
Main Authors: M. Bangert, A. Nenes, B. Vogel, H. Vogel, D. Barahona, V. A. Karydis, P. Kumar, C. Kottmeier, U. Blahak
Format: Article
Language:English
Published: Copernicus Publications 2012-05-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/4045/2012/acp-12-4045-2012.pdf
id doaj-198c50fb2aed43f79837f46bf7b57366
record_format Article
spelling doaj-198c50fb2aed43f79837f46bf7b573662020-11-25T01:59:23ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-05-011294045406310.5194/acp-12-4045-2012Saharan dust event impacts on cloud formation and radiation over Western EuropeM. BangertA. NenesB. VogelH. VogelD. BarahonaV. A. KarydisP. KumarC. KottmeierU. BlahakWe investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. <br><br> The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l<sup>−1</sup> during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. <br><br> Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to −75 W m<sup>−2</sup>. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80 W m<sup>−2</sup>, and the incoming long-wave radiation at the surface was increased significantly in the order of +10 W m<sup>−2</sup>. <br><br> The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of −0.2 to −0.5 K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to −1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.http://www.atmos-chem-phys.net/12/4045/2012/acp-12-4045-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Bangert
A. Nenes
B. Vogel
H. Vogel
D. Barahona
V. A. Karydis
P. Kumar
C. Kottmeier
U. Blahak
spellingShingle M. Bangert
A. Nenes
B. Vogel
H. Vogel
D. Barahona
V. A. Karydis
P. Kumar
C. Kottmeier
U. Blahak
Saharan dust event impacts on cloud formation and radiation over Western Europe
Atmospheric Chemistry and Physics
author_facet M. Bangert
A. Nenes
B. Vogel
H. Vogel
D. Barahona
V. A. Karydis
P. Kumar
C. Kottmeier
U. Blahak
author_sort M. Bangert
title Saharan dust event impacts on cloud formation and radiation over Western Europe
title_short Saharan dust event impacts on cloud formation and radiation over Western Europe
title_full Saharan dust event impacts on cloud formation and radiation over Western Europe
title_fullStr Saharan dust event impacts on cloud formation and radiation over Western Europe
title_full_unstemmed Saharan dust event impacts on cloud formation and radiation over Western Europe
title_sort saharan dust event impacts on cloud formation and radiation over western europe
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2012-05-01
description We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. <br><br> The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l<sup>−1</sup> during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. <br><br> Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to −75 W m<sup>−2</sup>. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80 W m<sup>−2</sup>, and the incoming long-wave radiation at the surface was increased significantly in the order of +10 W m<sup>−2</sup>. <br><br> The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of −0.2 to −0.5 K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to −1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.
url http://www.atmos-chem-phys.net/12/4045/2012/acp-12-4045-2012.pdf
work_keys_str_mv AT mbangert saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT anenes saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT bvogel saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT hvogel saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT dbarahona saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT vakarydis saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT pkumar saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT ckottmeier saharandusteventimpactsoncloudformationandradiationoverwesterneurope
AT ublahak saharandusteventimpactsoncloudformationandradiationoverwesterneurope
_version_ 1724964737514471424