A field theoretical model for quarkyonic matter

Abstract The possibility that nuclear matter at a density relevant to the interior of massive neutron stars may be a quarkynoic matter has attracted considerable recent interest. In this work, we construct a phenomenological model to describe the quarkyonic matter, that would allow quantitative calc...

Full description

Bibliographic Details
Main Authors: Gaoqing Cao, Jinfeng Liao
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2020)168
Description
Summary:Abstract The possibility that nuclear matter at a density relevant to the interior of massive neutron stars may be a quarkynoic matter has attracted considerable recent interest. In this work, we construct a phenomenological model to describe the quarkyonic matter, that would allow quantitative calculations of its various properties within a well-defined field theoretical framework. This is implemented by synthesizing the Walecka model together with the quark-meson model, where both quark and nucleon degrees of freedom are present based on the quarkyonic scenario. With this model we compute at mean-field level the thermodynamic properties of the symmetric nuclear matter and calibrate model parameters through well-known nuclear physics measurements. We find this model gives a very good description of the symmetric nuclear matter from moderate to high baryon density and demonstrates a continuous transition from nucleon-dominance to quark-dominance for the system.
ISSN:1029-8479