A field theoretical model for quarkyonic matter
Abstract The possibility that nuclear matter at a density relevant to the interior of massive neutron stars may be a quarkynoic matter has attracted considerable recent interest. In this work, we construct a phenomenological model to describe the quarkyonic matter, that would allow quantitative calc...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2020)168 |
Summary: | Abstract The possibility that nuclear matter at a density relevant to the interior of massive neutron stars may be a quarkynoic matter has attracted considerable recent interest. In this work, we construct a phenomenological model to describe the quarkyonic matter, that would allow quantitative calculations of its various properties within a well-defined field theoretical framework. This is implemented by synthesizing the Walecka model together with the quark-meson model, where both quark and nucleon degrees of freedom are present based on the quarkyonic scenario. With this model we compute at mean-field level the thermodynamic properties of the symmetric nuclear matter and calibrate model parameters through well-known nuclear physics measurements. We find this model gives a very good description of the symmetric nuclear matter from moderate to high baryon density and demonstrates a continuous transition from nucleon-dominance to quark-dominance for the system. |
---|---|
ISSN: | 1029-8479 |