Prediction of complex organic compounds activity with artificial neural networks.
The analysis of neural networks applicability for complex organic compounds activity prediction is provided. The regulation algorithm is offered to improve the prediction properties of the networks.
Main Authors: | , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
MIREA - Russian Technological University
2008-08-01
|
Series: | Тонкие химические технологии |
Subjects: | |
Online Access: | https://www.finechem-mirea.ru/jour/article/view/1519 |
id |
doaj-198824e9169b4dc4a8625dfec5ad4eb3 |
---|---|
record_format |
Article |
spelling |
doaj-198824e9169b4dc4a8625dfec5ad4eb32021-07-28T13:23:51ZrusMIREA - Russian Technological UniversityТонкие химические технологии2410-65932686-75752008-08-013479831514Prediction of complex organic compounds activity with artificial neural networks.E. V. Burljaeva0P. A. Ushakov1M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571The analysis of neural networks applicability for complex organic compounds activity prediction is provided. The regulation algorithm is offered to improve the prediction properties of the networks.https://www.finechem-mirea.ru/jour/article/view/1519нейронные сети, компьютерная химия, производные дитиокарбаминовой кислоты, tibo, структура и свойства органических соединений |
collection |
DOAJ |
language |
Russian |
format |
Article |
sources |
DOAJ |
author |
E. V. Burljaeva P. A. Ushakov |
spellingShingle |
E. V. Burljaeva P. A. Ushakov Prediction of complex organic compounds activity with artificial neural networks. Тонкие химические технологии нейронные сети, компьютерная химия, производные дитиокарбаминовой кислоты, tibo, структура и свойства органических соединений |
author_facet |
E. V. Burljaeva P. A. Ushakov |
author_sort |
E. V. Burljaeva |
title |
Prediction of complex organic compounds activity with artificial neural networks. |
title_short |
Prediction of complex organic compounds activity with artificial neural networks. |
title_full |
Prediction of complex organic compounds activity with artificial neural networks. |
title_fullStr |
Prediction of complex organic compounds activity with artificial neural networks. |
title_full_unstemmed |
Prediction of complex organic compounds activity with artificial neural networks. |
title_sort |
prediction of complex organic compounds activity with artificial neural networks. |
publisher |
MIREA - Russian Technological University |
series |
Тонкие химические технологии |
issn |
2410-6593 2686-7575 |
publishDate |
2008-08-01 |
description |
The analysis of neural networks applicability for complex organic compounds activity prediction is provided. The regulation algorithm is offered to improve the prediction properties of the networks. |
topic |
нейронные сети, компьютерная химия, производные дитиокарбаминовой кислоты, tibo, структура и свойства органических соединений |
url |
https://www.finechem-mirea.ru/jour/article/view/1519 |
work_keys_str_mv |
AT evburljaeva predictionofcomplexorganiccompoundsactivitywithartificialneuralnetworks AT paushakov predictionofcomplexorganiccompoundsactivitywithartificialneuralnetworks |
_version_ |
1721275269267849216 |