New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></sem...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/17/2061 |
id |
doaj-197d0ff587b74a5791f063dddf82471f |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wenjing Ding Huafeng Liu Deyu Zhang |
spellingShingle |
Wenjing Ding Huafeng Liu Deyu Zhang New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>) Mathematics zero density automorphic L-function automorphic representation |
author_facet |
Wenjing Ding Huafeng Liu Deyu Zhang |
author_sort |
Wenjing Ding |
title |
New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>) |
title_short |
New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>) |
title_full |
New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>) |
title_fullStr |
New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>) |
title_full_unstemmed |
New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>) |
title_sort |
new zero-density results for automorphic <i>l</i>-functions of <i>gl</i>(<i>n</i>) |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-08-01 |
description |
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> be an automorphic <i>L</i>-function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> is an automorphic representation of group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> over rational number field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Q</mi></semantics></math></inline-formula>. In this paper, we study the zero-density estimates for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><msub><mi>T</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> = ♯ {<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>γ</mi></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> = 0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo>≤</mo><mi>γ</mi><mo>≤</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>}, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>σ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo><</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. We first establish an upper bound for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is close to 1. Then we restrict the imaginary part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> into a narrow strip <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and prove some new zero-density results on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> under specific conditions, which improves previous results when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac></semantics></math></inline-formula> and 1, respectively. The proofs rely on the zero detecting method and the Halász-Montgomery method. |
topic |
zero density automorphic L-function automorphic representation |
url |
https://www.mdpi.com/2227-7390/9/17/2061 |
work_keys_str_mv |
AT wenjingding newzerodensityresultsforautomorphicilifunctionsofigliini AT huafengliu newzerodensityresultsforautomorphicilifunctionsofigliini AT deyuzhang newzerodensityresultsforautomorphicilifunctionsofigliini |
_version_ |
1717759705466535936 |
spelling |
doaj-197d0ff587b74a5791f063dddf82471f2021-09-09T13:52:14ZengMDPI AGMathematics2227-73902021-08-0192061206110.3390/math9172061New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)Wenjing Ding0Huafeng Liu1Deyu Zhang2School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> be an automorphic <i>L</i>-function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> is an automorphic representation of group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> over rational number field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Q</mi></semantics></math></inline-formula>. In this paper, we study the zero-density estimates for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><msub><mi>T</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> = ♯ {<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>γ</mi></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> = 0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo>≤</mo><mi>γ</mi><mo>≤</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>}, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>σ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo><</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. We first establish an upper bound for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is close to 1. Then we restrict the imaginary part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> into a narrow strip <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and prove some new zero-density results on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> under specific conditions, which improves previous results when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac></semantics></math></inline-formula> and 1, respectively. The proofs rely on the zero detecting method and the Halász-Montgomery method.https://www.mdpi.com/2227-7390/9/17/2061zero densityautomorphic L-functionautomorphic representation |