New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></sem...

Full description

Bibliographic Details
Main Authors: Wenjing Ding, Huafeng Liu, Deyu Zhang
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/17/2061
id doaj-197d0ff587b74a5791f063dddf82471f
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Wenjing Ding
Huafeng Liu
Deyu Zhang
spellingShingle Wenjing Ding
Huafeng Liu
Deyu Zhang
New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
Mathematics
zero density
automorphic L-function
automorphic representation
author_facet Wenjing Ding
Huafeng Liu
Deyu Zhang
author_sort Wenjing Ding
title New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
title_short New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
title_full New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
title_fullStr New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
title_full_unstemmed New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)
title_sort new zero-density results for automorphic <i>l</i>-functions of <i>gl</i>(<i>n</i>)
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-08-01
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> be an automorphic <i>L</i>-function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> is an automorphic representation of group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> over rational number field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Q</mi></semantics></math></inline-formula>. In this paper, we study the zero-density estimates for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><msub><mi>T</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> = ♯ {<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>γ</mi></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> = 0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo>≤</mo><mi>γ</mi><mo>≤</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>}, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>σ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo><</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. We first establish an upper bound for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is close to 1. Then we restrict the imaginary part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> into a narrow strip <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and prove some new zero-density results on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> under specific conditions, which improves previous results when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac></semantics></math></inline-formula> and 1, respectively. The proofs rely on the zero detecting method and the Halász-Montgomery method.
topic zero density
automorphic L-function
automorphic representation
url https://www.mdpi.com/2227-7390/9/17/2061
work_keys_str_mv AT wenjingding newzerodensityresultsforautomorphicilifunctionsofigliini
AT huafengliu newzerodensityresultsforautomorphicilifunctionsofigliini
AT deyuzhang newzerodensityresultsforautomorphicilifunctionsofigliini
_version_ 1717759705466535936
spelling doaj-197d0ff587b74a5791f063dddf82471f2021-09-09T13:52:14ZengMDPI AGMathematics2227-73902021-08-0192061206110.3390/math9172061New Zero-Density Results for Automorphic <i>L</i>-Functions of <i>GL</i>(<i>n</i>)Wenjing Ding0Huafeng Liu1Deyu Zhang2School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250358, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> be an automorphic <i>L</i>-function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> is an automorphic representation of group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> over rational number field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Q</mi></semantics></math></inline-formula>. In this paper, we study the zero-density estimates for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><msub><mi>T</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> = ♯ {<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> + <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>γ</mi></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula> = 0, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo>≤</mo><mi>γ</mi><mo>≤</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>}, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>σ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mn>1</mn></msub><mo><</mo><msub><mi>T</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. We first establish an upper bound for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is close to 1. Then we restrict the imaginary part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> into a narrow strip <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and prove some new zero-density results on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>π</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><msup><mi>T</mi><mi>α</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> under specific conditions, which improves previous results when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> near <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac></semantics></math></inline-formula> and 1, respectively. The proofs rely on the zero detecting method and the Halász-Montgomery method.https://www.mdpi.com/2227-7390/9/17/2061zero densityautomorphic L-functionautomorphic representation