Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
Abstract The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-08-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-08929-4 |
id |
doaj-197c665c115a48079978d01add1122ac |
---|---|
record_format |
Article |
spelling |
doaj-197c665c115a48079978d01add1122ac2020-12-08T01:58:27ZengNature Publishing GroupScientific Reports2045-23222017-08-017111410.1038/s41598-017-08929-4Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog EnvironmentF. Gaboyer0C. Le Milbeau1M. Bohmeier2P. Schwendner3P. Vannier4K. Beblo-Vranesevic5E. Rabbow6F. Foucher7P. Gautret8R. Guégan9A. Richard10A. Sauldubois11P. Richmann12A. K. Perras13C. Moissl-Eichinger14C. S. Cockell15P. Rettberg16Marteinsson17E. Monaghan18P. Ehrenfreund19L. Garcia-Descalzo20F. Gomez21M. Malki22R. Amils23P. Cabezas24N. Walter25F. Westall26Centre de Biophysique Moléculaire, CNRSInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieInstitute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)UK Center for Astrobiology, School of Physics and Astronomy, University of EdinburghMATIS - ProkariaInstitute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)Centre de Biophysique Moléculaire, CNRSInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieCentre de Microscopie Electronique, Université d’OrléansCentre de Microscopie Electronique, Université d’OrléansInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieUniversity Regensburg, Department of MicrobiologyBioTechMed GrazUK Center for Astrobiology, School of Physics and Astronomy, University of EdinburghInstitute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)MATIS - ProkariaLeiden Observatory, Universiteit LeidenLeiden Observatory, Universiteit LeidenInstituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB)Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB)Universidad Autónoma de Madrid (UAM)Universidad Autónoma de Madrid (UAM)European Science Foundation (ESF)European Science Foundation (ESF)Centre de Biophysique Moléculaire, CNRSAbstract The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.https://doi.org/10.1038/s41598-017-08929-4 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Gaboyer C. Le Milbeau M. Bohmeier P. Schwendner P. Vannier K. Beblo-Vranesevic E. Rabbow F. Foucher P. Gautret R. Guégan A. Richard A. Sauldubois P. Richmann A. K. Perras C. Moissl-Eichinger C. S. Cockell P. Rettberg Marteinsson E. Monaghan P. Ehrenfreund L. Garcia-Descalzo F. Gomez M. Malki R. Amils P. Cabezas N. Walter F. Westall |
spellingShingle |
F. Gaboyer C. Le Milbeau M. Bohmeier P. Schwendner P. Vannier K. Beblo-Vranesevic E. Rabbow F. Foucher P. Gautret R. Guégan A. Richard A. Sauldubois P. Richmann A. K. Perras C. Moissl-Eichinger C. S. Cockell P. Rettberg Marteinsson E. Monaghan P. Ehrenfreund L. Garcia-Descalzo F. Gomez M. Malki R. Amils P. Cabezas N. Walter F. Westall Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment Scientific Reports |
author_facet |
F. Gaboyer C. Le Milbeau M. Bohmeier P. Schwendner P. Vannier K. Beblo-Vranesevic E. Rabbow F. Foucher P. Gautret R. Guégan A. Richard A. Sauldubois P. Richmann A. K. Perras C. Moissl-Eichinger C. S. Cockell P. Rettberg Marteinsson E. Monaghan P. Ehrenfreund L. Garcia-Descalzo F. Gomez M. Malki R. Amils P. Cabezas N. Walter F. Westall |
author_sort |
F. Gaboyer |
title |
Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment |
title_short |
Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment |
title_full |
Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment |
title_fullStr |
Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment |
title_full_unstemmed |
Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment |
title_sort |
mineralization and preservation of an extremotolerant bacterium isolated from an early mars analog environment |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-08-01 |
description |
Abstract The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed. |
url |
https://doi.org/10.1038/s41598-017-08929-4 |
work_keys_str_mv |
AT fgaboyer mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT clemilbeau mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT mbohmeier mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT pschwendner mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT pvannier mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT kbeblovranesevic mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT erabbow mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT ffoucher mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT pgautret mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT rguegan mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT arichard mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT asauldubois mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT prichmann mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT akperras mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT cmoissleichinger mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT cscockell mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT prettberg mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT marteinsson mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT emonaghan mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT pehrenfreund mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT lgarciadescalzo mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT fgomez mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT mmalki mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT ramils mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT pcabezas mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT nwalter mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment AT fwestall mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment |
_version_ |
1724394277827510272 |