Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment

Abstract The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found...

Full description

Bibliographic Details
Main Authors: F. Gaboyer, C. Le Milbeau, M. Bohmeier, P. Schwendner, P. Vannier, K. Beblo-Vranesevic, E. Rabbow, F. Foucher, P. Gautret, R. Guégan, A. Richard, A. Sauldubois, P. Richmann, A. K. Perras, C. Moissl-Eichinger, C. S. Cockell, P. Rettberg, Marteinsson, E. Monaghan, P. Ehrenfreund, L. Garcia-Descalzo, F. Gomez, M. Malki, R. Amils, P. Cabezas, N. Walter, F. Westall
Format: Article
Language:English
Published: Nature Publishing Group 2017-08-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-08929-4
id doaj-197c665c115a48079978d01add1122ac
record_format Article
spelling doaj-197c665c115a48079978d01add1122ac2020-12-08T01:58:27ZengNature Publishing GroupScientific Reports2045-23222017-08-017111410.1038/s41598-017-08929-4Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog EnvironmentF. Gaboyer0C. Le Milbeau1M. Bohmeier2P. Schwendner3P. Vannier4K. Beblo-Vranesevic5E. Rabbow6F. Foucher7P. Gautret8R. Guégan9A. Richard10A. Sauldubois11P. Richmann12A. K. Perras13C. Moissl-Eichinger14C. S. Cockell15P. Rettberg16Marteinsson17E. Monaghan18P. Ehrenfreund19L. Garcia-Descalzo20F. Gomez21M. Malki22R. Amils23P. Cabezas24N. Walter25F. Westall26Centre de Biophysique Moléculaire, CNRSInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieInstitute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)UK Center for Astrobiology, School of Physics and Astronomy, University of EdinburghMATIS - ProkariaInstitute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)Centre de Biophysique Moléculaire, CNRSInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieCentre de Microscopie Electronique, Université d’OrléansCentre de Microscopie Electronique, Université d’OrléansInstitut des Sciences de la Terre d’Orléans, UMR 7327, CNRS-Université d’Orléans, 1A Rue de la FérollerieUniversity Regensburg, Department of MicrobiologyBioTechMed GrazUK Center for Astrobiology, School of Physics and Astronomy, University of EdinburghInstitute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR)MATIS - ProkariaLeiden Observatory, Universiteit LeidenLeiden Observatory, Universiteit LeidenInstituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB)Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB)Universidad Autónoma de Madrid (UAM)Universidad Autónoma de Madrid (UAM)European Science Foundation (ESF)European Science Foundation (ESF)Centre de Biophysique Moléculaire, CNRSAbstract The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.https://doi.org/10.1038/s41598-017-08929-4
collection DOAJ
language English
format Article
sources DOAJ
author F. Gaboyer
C. Le Milbeau
M. Bohmeier
P. Schwendner
P. Vannier
K. Beblo-Vranesevic
E. Rabbow
F. Foucher
P. Gautret
R. Guégan
A. Richard
A. Sauldubois
P. Richmann
A. K. Perras
C. Moissl-Eichinger
C. S. Cockell
P. Rettberg
Marteinsson
E. Monaghan
P. Ehrenfreund
L. Garcia-Descalzo
F. Gomez
M. Malki
R. Amils
P. Cabezas
N. Walter
F. Westall
spellingShingle F. Gaboyer
C. Le Milbeau
M. Bohmeier
P. Schwendner
P. Vannier
K. Beblo-Vranesevic
E. Rabbow
F. Foucher
P. Gautret
R. Guégan
A. Richard
A. Sauldubois
P. Richmann
A. K. Perras
C. Moissl-Eichinger
C. S. Cockell
P. Rettberg
Marteinsson
E. Monaghan
P. Ehrenfreund
L. Garcia-Descalzo
F. Gomez
M. Malki
R. Amils
P. Cabezas
N. Walter
F. Westall
Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
Scientific Reports
author_facet F. Gaboyer
C. Le Milbeau
M. Bohmeier
P. Schwendner
P. Vannier
K. Beblo-Vranesevic
E. Rabbow
F. Foucher
P. Gautret
R. Guégan
A. Richard
A. Sauldubois
P. Richmann
A. K. Perras
C. Moissl-Eichinger
C. S. Cockell
P. Rettberg
Marteinsson
E. Monaghan
P. Ehrenfreund
L. Garcia-Descalzo
F. Gomez
M. Malki
R. Amils
P. Cabezas
N. Walter
F. Westall
author_sort F. Gaboyer
title Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
title_short Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
title_full Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
title_fullStr Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
title_full_unstemmed Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment
title_sort mineralization and preservation of an extremotolerant bacterium isolated from an early mars analog environment
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2017-08-01
description Abstract The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.
url https://doi.org/10.1038/s41598-017-08929-4
work_keys_str_mv AT fgaboyer mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT clemilbeau mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT mbohmeier mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT pschwendner mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT pvannier mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT kbeblovranesevic mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT erabbow mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT ffoucher mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT pgautret mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT rguegan mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT arichard mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT asauldubois mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT prichmann mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT akperras mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT cmoissleichinger mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT cscockell mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT prettberg mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT marteinsson mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT emonaghan mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT pehrenfreund mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT lgarciadescalzo mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT fgomez mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT mmalki mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT ramils mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT pcabezas mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT nwalter mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
AT fwestall mineralizationandpreservationofanextremotolerantbacteriumisolatedfromanearlymarsanalogenvironment
_version_ 1724394277827510272