MicroRNA-181c Inhibits Interleukin-6-mediated Beta Cell Apoptosis by Targeting TNF-α Expression

We have previously reported that long-term treatment of beta cells with interleukin-6 (IL-6) is pro-apoptotic. However, little is known about the regulatory mechanisms that are involved. Therefore, we investigated pro-apoptotic changes in mRNA expression in beta cells in response to IL-6 treatment....

Full description

Bibliographic Details
Main Authors: Yoon Sin Oh, Gong Deuk Bae, Eun-Young Park, Hee-Sook Jun
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/24/7/1410
Description
Summary:We have previously reported that long-term treatment of beta cells with interleukin-6 (IL-6) is pro-apoptotic. However, little is known about the regulatory mechanisms that are involved. Therefore, we investigated pro-apoptotic changes in mRNA expression in beta cells in response to IL-6 treatment. We analyzed a microarray with RNA from INS-1 beta cells treated with IL-6, and found that TNF-α mRNA was significantly upregulated. Inhibition of TNF-α expression by neutralizing antibodies significantly decreased annexin V staining in cells compared with those treated with a control antibody. We identified three microRNAs that were differentially expressed in INS-1 cells incubated with IL-6. In particular, miR-181c was significantly downregulated in IL-6-treated cells compared with control cells and the decrease of miR-181c was attenuated by STAT-3 signaling inhibition. TNF-α mRNA was a direct target of miR-181c and upregulation of miR-181c by mimics, inhibited IL-6-induced increase in TNF-α mRNA expression. Consequently, reduction of TNF-α mRNA caused by miR-181c mimics enhanced cell viability in IL-6 treated INS-1 cells. These results demonstrated that miR-181c regulation of TNF-α expression plays a role in IL-6-induced beta cell apoptosis.
ISSN:1420-3049