New Insight into the Toughening Mechanisms of Seashell: From Arch Shape to Multilayer Structure
A seashell is a closed three-dimensional curved surface formed by two symmetrical open shells. Three-point bending is performed on a pure aragonite straight beam (PASB) model and a multilayer structure curved beam (MSCB) model to elucidate the structure-property relationships of seashells. The integ...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2016/3817985 |
Summary: | A seashell is a closed three-dimensional curved surface formed by two symmetrical open shells. Three-point bending is performed on a pure aragonite straight beam (PASB) model and a multilayer structure curved beam (MSCB) model to elucidate the structure-property relationships of seashells. The integrity of the PASB is broken because of the introduction of a soft layer, but this drawback is compensated by the peculiar arch shape and the internal multilayer structure. The effective modulus, stiffness, and fracture energy of MSCB increase with an increase in volume fraction, aspect ratio of aragonite platelet, overlap ratio of hard layers, and ratio of the elastic modulus of the hard layer to the shear modulus of the soft layer. New design disciplines drawn from the MSCB model are peculiar arch shape, internal multilayer structure of larger volume fraction, and aspect ratio of hard layers and nanoscaled soft layers. |
---|---|
ISSN: | 1687-4110 1687-4129 |