Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line

<p/> <p>For a sequence of bounded linear operators <inline-formula><graphic file="1687-1847-2006-058453-i1.gif"/></inline-formula> on a Banach space <it>X</it>, we investigate the characterization of exponential dichotomy of the difference equation...

Full description

Bibliographic Details
Main Authors: Huy Nguyen Thieu, Ha Vu Thi Ngoc
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2006/058453
id doaj-195bfdcd478b46859caa3a8ba193e7eb
record_format Article
spelling doaj-195bfdcd478b46859caa3a8ba193e7eb2020-11-25T02:45:26ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472006-01-0120061058453Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-lineHuy Nguyen ThieuHa Vu Thi Ngoc<p/> <p>For a sequence of bounded linear operators <inline-formula><graphic file="1687-1847-2006-058453-i1.gif"/></inline-formula> on a Banach space <it>X</it>, we investigate the characterization of exponential dichotomy of the difference equations <it>v</it><sub><it>n</it>+1</sub> = <it>A</it><sub><it>n</it></sub><it>v</it><sub><it>n</it></sub>. We characterize the exponential dichotomy of difference equations in terms of the existence of solutions to the equations <it>v</it><sub><it>n</it>+1</sub> = <it>A</it><sub><it>n</it></sub><it>v</it><sub><it>n</it></sub> + <it>f</it><sub><it>n</it></sub> in <it>l</it><sub><it>p</it></sub> spaces (1 &#8804; <it>p</it> &lt; &#8734;). Then we apply the results to study the robustness of exponential dichotomy of difference equations.</p> http://www.advancesindifferenceequations.com/content/2006/058453
collection DOAJ
language English
format Article
sources DOAJ
author Huy Nguyen Thieu
Ha Vu Thi Ngoc
spellingShingle Huy Nguyen Thieu
Ha Vu Thi Ngoc
Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
Advances in Difference Equations
author_facet Huy Nguyen Thieu
Ha Vu Thi Ngoc
author_sort Huy Nguyen Thieu
title Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
title_short Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
title_full Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
title_fullStr Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
title_full_unstemmed Exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
title_sort exponential dichotomy of difference equations in <it>l</it><sub><it>p</it></sub>-phase spaces on the half-line
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2006-01-01
description <p/> <p>For a sequence of bounded linear operators <inline-formula><graphic file="1687-1847-2006-058453-i1.gif"/></inline-formula> on a Banach space <it>X</it>, we investigate the characterization of exponential dichotomy of the difference equations <it>v</it><sub><it>n</it>+1</sub> = <it>A</it><sub><it>n</it></sub><it>v</it><sub><it>n</it></sub>. We characterize the exponential dichotomy of difference equations in terms of the existence of solutions to the equations <it>v</it><sub><it>n</it>+1</sub> = <it>A</it><sub><it>n</it></sub><it>v</it><sub><it>n</it></sub> + <it>f</it><sub><it>n</it></sub> in <it>l</it><sub><it>p</it></sub> spaces (1 &#8804; <it>p</it> &lt; &#8734;). Then we apply the results to study the robustness of exponential dichotomy of difference equations.</p>
url http://www.advancesindifferenceequations.com/content/2006/058453
work_keys_str_mv AT huynguyenthieu exponentialdichotomyofdifferenceequationsinitlitsubitpitsubphasespacesonthehalfline
AT havuthingoc exponentialdichotomyofdifferenceequationsinitlitsubitpitsubphasespacesonthehalfline
_version_ 1724762952473509888