The Fast Simulation of Scattering Characteristics from a Simplified Time Varying Sea Surface

This paper aims at applying a simplified sea surface model into the physical optics (PO) method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is pro...

Full description

Bibliographic Details
Main Authors: Yiwen Wei, Lixin Guo, Xiao Meng
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/815913
Description
Summary:This paper aims at applying a simplified sea surface model into the physical optics (PO) method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.
ISSN:1687-5869
1687-5877