In Vivo Imaging of Influenza Virus Infection in Immunized Mice

Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS) technology to evaluate the preclinical efficacy...

Full description

Bibliographic Details
Main Authors: Rita Czakó, Leatrice Vogel, Elaine W. Lamirande, Kevin W. Bock, Ian N. Moore, Ali H. Ellebedy, Rafi Ahmed, Andrew Mehle, Kanta Subbarao, Xiang-Jin Meng
Format: Article
Language:English
Published: American Society for Microbiology 2017-05-01
Series:mBio
Online Access:http://mbio.asm.org/cgi/content/full/8/3/e00714-17
Description
Summary:Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS) technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice.
ISSN:2150-7511