Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation
<b>: </b>Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Biomedicines |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9059/9/1/16 |
id |
doaj-190a73ae2b0142aabcfd9b85948462a4 |
---|---|
record_format |
Article |
spelling |
doaj-190a73ae2b0142aabcfd9b85948462a42020-12-27T00:02:00ZengMDPI AGBiomedicines2227-90592021-12-019161610.3390/biomedicines9010016Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction FormationBorja Sanz0Ane Albillos Sanchez1Bonnie Tangey2Kerry Gilmore3Zhilian Yue4Xiao Liu5Gordon Wallace6ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, AustraliaARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, AustraliaARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, AustraliaARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, AustraliaARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, AustraliaARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, AustraliaARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, Australia<b>: </b>Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted<i> </i>model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis.https://www.mdpi.com/2227-9059/9/1/163D bioprintingneural cellskeletal muscle cellneuromuscular junction |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Borja Sanz Ane Albillos Sanchez Bonnie Tangey Kerry Gilmore Zhilian Yue Xiao Liu Gordon Wallace |
spellingShingle |
Borja Sanz Ane Albillos Sanchez Bonnie Tangey Kerry Gilmore Zhilian Yue Xiao Liu Gordon Wallace Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation Biomedicines 3D bioprinting neural cell skeletal muscle cell neuromuscular junction |
author_facet |
Borja Sanz Ane Albillos Sanchez Bonnie Tangey Kerry Gilmore Zhilian Yue Xiao Liu Gordon Wallace |
author_sort |
Borja Sanz |
title |
Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation |
title_short |
Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation |
title_full |
Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation |
title_fullStr |
Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation |
title_full_unstemmed |
Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation |
title_sort |
light cross-linkable marine collagen for coaxial printing of a 3d model of neuromuscular junction formation |
publisher |
MDPI AG |
series |
Biomedicines |
issn |
2227-9059 |
publishDate |
2021-12-01 |
description |
<b>: </b>Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted<i> </i>model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis. |
topic |
3D bioprinting neural cell skeletal muscle cell neuromuscular junction |
url |
https://www.mdpi.com/2227-9059/9/1/16 |
work_keys_str_mv |
AT borjasanz lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation AT anealbillossanchez lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation AT bonnietangey lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation AT kerrygilmore lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation AT zhilianyue lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation AT xiaoliu lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation AT gordonwallace lightcrosslinkablemarinecollagenforcoaxialprintingofa3dmodelofneuromuscularjunctionformation |
_version_ |
1724370081857667072 |