Vesicle Size Distribution as a Novel Nuclear Forensics Tool.
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28″N, 106°28'31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy mate...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5033408?pdf=render |
id |
doaj-18ee9c0119c54143a499c4753ac688f7 |
---|---|
record_format |
Article |
spelling |
doaj-18ee9c0119c54143a499c4753ac688f72020-11-24T21:38:10ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01119e016351610.1371/journal.pone.0163516Vesicle Size Distribution as a Novel Nuclear Forensics Tool.Patrick H DonohueAntonio SimonettiThe first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28″N, 106°28'31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated "Trinitite". In cross section, Trinitite comprises a thin (1-2 mm), primarily glassy surface above a lower zone (1-2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.http://europepmc.org/articles/PMC5033408?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Patrick H Donohue Antonio Simonetti |
spellingShingle |
Patrick H Donohue Antonio Simonetti Vesicle Size Distribution as a Novel Nuclear Forensics Tool. PLoS ONE |
author_facet |
Patrick H Donohue Antonio Simonetti |
author_sort |
Patrick H Donohue |
title |
Vesicle Size Distribution as a Novel Nuclear Forensics Tool. |
title_short |
Vesicle Size Distribution as a Novel Nuclear Forensics Tool. |
title_full |
Vesicle Size Distribution as a Novel Nuclear Forensics Tool. |
title_fullStr |
Vesicle Size Distribution as a Novel Nuclear Forensics Tool. |
title_full_unstemmed |
Vesicle Size Distribution as a Novel Nuclear Forensics Tool. |
title_sort |
vesicle size distribution as a novel nuclear forensics tool. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28″N, 106°28'31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated "Trinitite". In cross section, Trinitite comprises a thin (1-2 mm), primarily glassy surface above a lower zone (1-2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. |
url |
http://europepmc.org/articles/PMC5033408?pdf=render |
work_keys_str_mv |
AT patrickhdonohue vesiclesizedistributionasanovelnuclearforensicstool AT antoniosimonetti vesiclesizedistributionasanovelnuclearforensicstool |
_version_ |
1725935227517272064 |