Experimental Study on Nonlinear Seepage Characteristics and Particle Size Gradation Effect of Fractured Sandstones

Seepage mutation of fractured rock mass is one of the main inducements of dump slide and other disasters. Pore structure is a significant factor affecting the seepage characteristics of fractured rock mass, while particle size gradation has an important effect on the distribution of pore structure....

Full description

Bibliographic Details
Main Authors: Xuyang Shi, Wei Zhou, Qingxiang Cai, Xiang Lu
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2018/8640535
Description
Summary:Seepage mutation of fractured rock mass is one of the main inducements of dump slide and other disasters. Pore structure is a significant factor affecting the seepage characteristics of fractured rock mass, while particle size gradation has an important effect on the distribution of pore structure. Through the self-developed experimental system, the nonlinear seepage test on the fractured sandstones of the coalseam roof was conducted to investigate the influence of seepage pressure, porosity, and fractal dimension. Besides, the nonlinear seepage model was established by Barree–Conway theory. The results showed that, during the seepage process of fractured sandstone, there were significant nonlinear characteristics, which increased with the increase of the seepage pressure. With the increasing porosity, there was greater average pore size of fractured sandstone, stronger permeability, and weaker nonlinear seepage. The seepage characteristics approximated to that of Darcy model. However, with increasing grading fractal dimension, there were smaller average pore size of fractured sandstone, weaker permeability, and stronger nonlinear seepage. The seepage characteristics approximated to that of Forchheimer model.
ISSN:1687-8086
1687-8094