THE RELATIONSHIP BETWEEN MAXIMUM UNILATERAL SQUAT STRENGTH AND BALANCE IN YOUNG ADULT MEN AND WOMEN
The purpose of this study was to determine the relationship between unilateral squat strength and measures of static balance to compare balance performance between the dominant and non-dominant leg. Seventeen apparently healthy men (mean mass 90.5 ± 20.9 kg and age 21.7 ± 1.8 yrs) and 25 women (mean...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Uludag
2006-06-01
|
Series: | Journal of Sports Science and Medicine |
Subjects: | |
Online Access: | http://www.jssm.org/vol5/n2/13/v5n2-13text.php |
Summary: | The purpose of this study was to determine the relationship between unilateral squat strength and measures of static balance to compare balance performance between the dominant and non-dominant leg. Seventeen apparently healthy men (mean mass 90.5 ± 20.9 kg and age 21.7 ± 1.8 yrs) and 25 women (mean mass 62.2 ± 14.5 kg and age 21.9 ± 1.3 yrs) completed the study. Weight bearing unilateral strength was measured with a 1RM modified unilateral squat on the dominant and non-dominant leg. The students completed the stork stand and wobble board tests to determine static balance on the dominant and non-dominant leg. Maximum time maintained in the stork stand position, on the ball of the foot with the uninvolved foot against the involved knee with hands on the hips, was recorded. Balance was measured with a 15 second wobble board test. No significant correlations were found between the measurements of unilateral balance and strength (r values ranged between -0.05 to 0.2) for the men and women. Time off balance was not significantly different between the subjects' dominant (men 1.1 ± 0.4 s; women 0.3 ± 0.1 s) and non-dominant (men 0.9 ± 0.3 s; women 0.3 ± 0.1 s) leg for the wobble board. Similar results were found for the time balanced during the stork stand test on the dominant (men 26.4 ± 6.3 s; women 24.1 ± 5.6 s) and non-dominant (men 26.0 ± 5.7 s; women 21.3 ± 4.1 s) leg. The data indicate that static balance and strength is unrelated in young adult men and women and gains made in one variable after training may not be associated with a change in performance of the other variable. These results also suggest that differences in static balance performance between legs can not be determined by leg dominance. Similar research is needed to compare contralateral leg balance in populations who participate in work or sport activities requiring repetitive asymmetrical use. A better understanding of contralateral balance performance will help practitioners make evaluative decisions during the rehabilitation process |
---|---|
ISSN: | 1303-2968 |